针对滚动球轴承振动加速度信号特征提取问题,提出一种基于中心对称局部二值模式(center-symmetric local binary pattern,简称CSLBP)的时频特征提取方法。首先,利用广义S变换对滚动球轴承振动加速度信号进行处理,通过采用时频聚集性度...针对滚动球轴承振动加速度信号特征提取问题,提出一种基于中心对称局部二值模式(center-symmetric local binary pattern,简称CSLBP)的时频特征提取方法。首先,利用广义S变换对滚动球轴承振动加速度信号进行处理,通过采用时频聚集性度量准则自适应地确定广义S变换的调整参数,从而获取时频分辨性较好的二维时频图;然后,计算二维时频图的CSLBP,提取CSLBP纹理谱描述滚动球轴承振动加速度信号的时频特征。对滚动球轴承正常、外圈故障、内圈故障和滚动体故障4种不同状态的振动加速度信号进行了研究。结果表明,CSLBP纹理谱能有效地表达滚动球轴承振动加速度信号的时频特征,与局部二值模式(local binary pattern,简称LBP)和统一模式LBP纹理谱相比,CSLBP纹理谱具有特征维数低和区分性能好的优点。展开更多
针对人脸识别中识别精度低的问题,提出一种基于深度学习的跨年龄人脸识别算法.该方法创新性地将方向梯度直方图(Histogram of Oriented Gradient,HOG)和中心对称局部二值模式(Center Symmetric Local Binary Pattern,CSLBPS)组合方法用...针对人脸识别中识别精度低的问题,提出一种基于深度学习的跨年龄人脸识别算法.该方法创新性地将方向梯度直方图(Histogram of Oriented Gradient,HOG)和中心对称局部二值模式(Center Symmetric Local Binary Pattern,CSLBPS)组合方法用于人脸图像特征提取,获得包含结构和强度信息的图像融合特征,然后使用二叉树对特征信息进行降维,降维特征作为深度信念网络的可视层输入量,弥补深度新信念网络无法达到图像局部特征要求的缺陷.通过训练好的深度网络模型对测试样本进行学习,在深度信念网络的最顶层对特征进行分类识别.实验结果表明,该方法能高精度实现人脸识别,且与其他方法比较,该方法性能优于其他方法,说明该方法具有可行性和有效性.展开更多
文摘针对人脸识别中识别精度低的问题,提出一种基于深度学习的跨年龄人脸识别算法.该方法创新性地将方向梯度直方图(Histogram of Oriented Gradient,HOG)和中心对称局部二值模式(Center Symmetric Local Binary Pattern,CSLBPS)组合方法用于人脸图像特征提取,获得包含结构和强度信息的图像融合特征,然后使用二叉树对特征信息进行降维,降维特征作为深度信念网络的可视层输入量,弥补深度新信念网络无法达到图像局部特征要求的缺陷.通过训练好的深度网络模型对测试样本进行学习,在深度信念网络的最顶层对特征进行分类识别.实验结果表明,该方法能高精度实现人脸识别,且与其他方法比较,该方法性能优于其他方法,说明该方法具有可行性和有效性.