针对复杂的室内环境下,传统的射频识别技术(radio frequency identification,RFID)室内定位技术获得的接收信号强度特征向量维数较低,不能充分描述环境信息,无法获得良好的定位效果的问题,基于联合指纹提出一种鲁棒性强的高精度室内定...针对复杂的室内环境下,传统的射频识别技术(radio frequency identification,RFID)室内定位技术获得的接收信号强度特征向量维数较低,不能充分描述环境信息,无法获得良好的定位效果的问题,基于联合指纹提出一种鲁棒性强的高精度室内定位算法。该算法首先从RFID阅读器接收到的信号中提取信号强度和相位差数据,建立指纹库。然后利用凹函数递减策略改进PSO算法,优化SVR模型训练样本数据,建立参考标签的指纹特征和其与阅读器距离的映射关系。最后利用改进PSO算法迭代寻优,从而提高室内定位精度和鲁棒性。在仿真中,将该算法与GA-SVR和PSO-SVR算法进行比较,分析了不同指纹数据集和噪声对定位性能的影响。仿真结果表明,在相同指纹数据集和环境下,该算法的定位精度和系统稳定性均优于其他两种算法。展开更多
文摘针对复杂的室内环境下,传统的射频识别技术(radio frequency identification,RFID)室内定位技术获得的接收信号强度特征向量维数较低,不能充分描述环境信息,无法获得良好的定位效果的问题,基于联合指纹提出一种鲁棒性强的高精度室内定位算法。该算法首先从RFID阅读器接收到的信号中提取信号强度和相位差数据,建立指纹库。然后利用凹函数递减策略改进PSO算法,优化SVR模型训练样本数据,建立参考标签的指纹特征和其与阅读器距离的映射关系。最后利用改进PSO算法迭代寻优,从而提高室内定位精度和鲁棒性。在仿真中,将该算法与GA-SVR和PSO-SVR算法进行比较,分析了不同指纹数据集和噪声对定位性能的影响。仿真结果表明,在相同指纹数据集和环境下,该算法的定位精度和系统稳定性均优于其他两种算法。