Stroke is characterized by high incidence,high recurrence,high disability,and high morbidity and mortality in China,resulting in a heavy social and clinical burden.A clinical decision support system,as an intelli-gent...Stroke is characterized by high incidence,high recurrence,high disability,and high morbidity and mortality in China,resulting in a heavy social and clinical burden.A clinical decision support system,as an intelli-gent computer system,can assist nurses in decision-mak-ing to collect information quickly,make the most suitable personalized decisions for patients,and improve nurses’decision-making judgment and quality of care.Promoting the development and application of decision support sys-tems in stroke nursing significantly enhances the nursing staff’s work quality and patients’prognosis.Therefore,this paper reviews the research progress of domestic and international clinical decision support systems in stroke nursing care to provide other researchers with specific research directions for developing and applying decision support systems in stroke nursing care.展开更多
Objective:Artificial intelligence(AI)has a big impact on healthcare now and in the future.Nurses play an important role in the medical field and will benefit greatly from this technology.AI-Enabled Clinical Decision S...Objective:Artificial intelligence(AI)has a big impact on healthcare now and in the future.Nurses play an important role in the medical field and will benefit greatly from this technology.AI-Enabled Clinical Decision Support Systems have received a great deal of attention recently.Bibliometric analysis can offer an objective,systematic,and comprehensive analysis of a specific field with a vast background.However,no bibliometric analysis has investigated AI-enabled clinical decision support systems research in nursing.The purpose of research to determine the characteristics of articles about the global performance and development of AI-enabled clinical decision support systems research in nursing.Methods:In this study,the bibliometric approach was used to estimate the searched data on clinical decision support systems research in nursing from 2009 to 2022,and we also utilized CiteSpace and VOSviewer software to build visualizing maps to assess the contribution of different journals,authors,et al.,as well as to identify research hot spots and promising future trends in this research field.Result:From 2009 to 2022,a total of 2,159 publications were retrieved.The number of publications and citations on AI-enabled clinical decision support systems research in nursing has increased obvious ly in recent years.However,they are understudied in the field of nursing and there is a compelling need to develop more high-quality research.Conclusion:AI-Enabled Nursing Decision Support System use in clinical practice is still in its early stages.These analyses and results hope to provide useful information and references for future research directions for researchers and nursing practitioners who use AI-enabled clinical decision support systems.展开更多
Clinical decision support(CDS) systems with automated alerts integrated into electronic medical records demonstrate efficacy for detecting medication errors(ME) and adverse drug events(ADEs). Critically ill patients a...Clinical decision support(CDS) systems with automated alerts integrated into electronic medical records demonstrate efficacy for detecting medication errors(ME) and adverse drug events(ADEs). Critically ill patients are at increased risk for ME, ADEs and serious negative outcomes related to these events. Capitalizing on CDS to detect ME and prevent adverse drug related events has the potential to improve patient outcomes. The key to an effective medication safety surveillance system incorporating CDS is advancing the signals for alerts by using trajectory analyses to predict clinical events, instead of waiting for these events to occur. Additionally, incorporating cutting-edge biomarkers into alert knowledge in an effort to identify the need to adjust medication therapy portending harm will advance the current state of CDS. CDS can be taken a step further to identify drug related physiological events, which are less commonly included in surveillance systems. Predictive models for adverse events that combine patient factors with laboratory values and biomarkers are being established and these models can be the foundation for individualized CDS alerts to prevent impending ADEs.展开更多
The clinical decision support system makes electronic health records(EHRs)structured,intelligent,and knowledgeable.The nursing decision support system(NDSS)is based on clinical nursing guidelines and nursing process t...The clinical decision support system makes electronic health records(EHRs)structured,intelligent,and knowledgeable.The nursing decision support system(NDSS)is based on clinical nursing guidelines and nursing process to provide intelligent suggestions and reminders.The impact on nurses’work is mainly in shortening the recording time,improving the quality of nursing diagnosis,reducing the incidence of nursing risk events,and so on.However,there is no authoritative standard for the NDSS at home and abroad.This review introduces development and challenges of EHRs and recommends the application of the NDSS in EHRs,namely the nursing assessment decision support system,the nursing diagnostic decision support system,and the nursing care planning decision support system(including nursing intervene),hoping to provide a new thought and method to structure impeccable EHRs.展开更多
Computerized decision support(CDS) is the most advanced form of clinical decision support available and has evolved with innovative technologies to provide meaningful assistance to medical professionals. Critical care...Computerized decision support(CDS) is the most advanced form of clinical decision support available and has evolved with innovative technologies to provide meaningful assistance to medical professionals. Critical care clinicians are in unique environments where vast amounts of data are collected on individual patients, and where expedient and accurate decisions are paramount to the delivery of quality healthcare. Many CDS tools are in use today among adult and pediatric intensive care units as diagnostic aides, safety alerts, computerized protocols, and automated recommendations for management. Some CDS use have significantly decreased adverse events and improved costs when carefully implemented and properly operated. CDS tools integrated into electronic health records are also valuable to researchers providing rapid identification of eligible patients, streamlining data-gathering and analysis, and providing cohorts for study of rare and chronic diseases through data-warehousing. Although the need for human judgment in the daily care of critically ill patients has limited the study and realization ofmeaningful improvements in overall patient outcomes, CDS tools continue to evolve and integrate into the daily workflow of clinicians, and will likely provide advancements over time. Through novel technologies, CDS tools have vast potential for progression and will significantly impact the field of critical care and clinical research in the future.展开更多
This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical ...This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.展开更多
目的探讨临床决策支持系统(CDSS)在原发性肝癌患者围手术期护理中的应用价值。方法回顾性分析2022年1月至2023年10月河南省人民医院收治的48例围手术期接受常规护理的原发性肝癌患者资料,纳入对照组;采集同期医院收治的48例围手术期接...目的探讨临床决策支持系统(CDSS)在原发性肝癌患者围手术期护理中的应用价值。方法回顾性分析2022年1月至2023年10月河南省人民医院收治的48例围手术期接受常规护理的原发性肝癌患者资料,纳入对照组;采集同期医院收治的48例围手术期接受基于CDSS的护理管理的原发性肝癌患者资料,纳入观察组。查阅并比较两组护理质量(护理级别符合率、护理诊断正确率、护理处理及时率)、术后1、3、72 d时疼痛程度[采用疼痛数字评分法(NRS)评估]、护理期间并发症发生情况。结果观察组护理级别符合率、护理诊断正确率、护理处理及时率均高于对照组(P<0.05)。两组术后1、3、5 d NRS评分组间、时间、交互效应有统计学意义(P<0.05)。两组术后3、5 d NRS评分均较术后1 d高,术后5 d较术后3 d高(P<0.05)。两组术后1 d NRS评分差异无统计学意义(P>0.05),观察组术后3、5 d时NRS评分均低于对照组(P<0.05)。观察组护理期间并发症总发生率低于对照组(P<0.05)。结论基于CDSS的护理管理可提高原发性肝癌患者围手术期护理质量,减轻患者术后疼痛,降低术后并发症发生风险。展开更多
文摘Stroke is characterized by high incidence,high recurrence,high disability,and high morbidity and mortality in China,resulting in a heavy social and clinical burden.A clinical decision support system,as an intelli-gent computer system,can assist nurses in decision-mak-ing to collect information quickly,make the most suitable personalized decisions for patients,and improve nurses’decision-making judgment and quality of care.Promoting the development and application of decision support sys-tems in stroke nursing significantly enhances the nursing staff’s work quality and patients’prognosis.Therefore,this paper reviews the research progress of domestic and international clinical decision support systems in stroke nursing care to provide other researchers with specific research directions for developing and applying decision support systems in stroke nursing care.
基金Lan-Fang Qin was supported by National Innovation and Entrepreneurship Training Program for College Students(2022KYCX69)Rui Wang was supported by the Nursing Subject(Zhejiang Province"13th Five-Year Plan"Characteristic Specialty Construction Project)under Grant(JY30001)Chong-Bin Liu supported by the grants from National Natural Science Foundation of Zhejiang Province,No.LY21H260005 and No.2017290-40.
文摘Objective:Artificial intelligence(AI)has a big impact on healthcare now and in the future.Nurses play an important role in the medical field and will benefit greatly from this technology.AI-Enabled Clinical Decision Support Systems have received a great deal of attention recently.Bibliometric analysis can offer an objective,systematic,and comprehensive analysis of a specific field with a vast background.However,no bibliometric analysis has investigated AI-enabled clinical decision support systems research in nursing.The purpose of research to determine the characteristics of articles about the global performance and development of AI-enabled clinical decision support systems research in nursing.Methods:In this study,the bibliometric approach was used to estimate the searched data on clinical decision support systems research in nursing from 2009 to 2022,and we also utilized CiteSpace and VOSviewer software to build visualizing maps to assess the contribution of different journals,authors,et al.,as well as to identify research hot spots and promising future trends in this research field.Result:From 2009 to 2022,a total of 2,159 publications were retrieved.The number of publications and citations on AI-enabled clinical decision support systems research in nursing has increased obvious ly in recent years.However,they are understudied in the field of nursing and there is a compelling need to develop more high-quality research.Conclusion:AI-Enabled Nursing Decision Support System use in clinical practice is still in its early stages.These analyses and results hope to provide useful information and references for future research directions for researchers and nursing practitioners who use AI-enabled clinical decision support systems.
基金Supported by The Agency for Healthcare Research and Quality,No.R18HS02420-01
文摘Clinical decision support(CDS) systems with automated alerts integrated into electronic medical records demonstrate efficacy for detecting medication errors(ME) and adverse drug events(ADEs). Critically ill patients are at increased risk for ME, ADEs and serious negative outcomes related to these events. Capitalizing on CDS to detect ME and prevent adverse drug related events has the potential to improve patient outcomes. The key to an effective medication safety surveillance system incorporating CDS is advancing the signals for alerts by using trajectory analyses to predict clinical events, instead of waiting for these events to occur. Additionally, incorporating cutting-edge biomarkers into alert knowledge in an effort to identify the need to adjust medication therapy portending harm will advance the current state of CDS. CDS can be taken a step further to identify drug related physiological events, which are less commonly included in surveillance systems. Predictive models for adverse events that combine patient factors with laboratory values and biomarkers are being established and these models can be the foundation for individualized CDS alerts to prevent impending ADEs.
基金This project was supported by the Development and application of nursing decision support system based on artificial intelligence(No.2019ZD006).
文摘The clinical decision support system makes electronic health records(EHRs)structured,intelligent,and knowledgeable.The nursing decision support system(NDSS)is based on clinical nursing guidelines and nursing process to provide intelligent suggestions and reminders.The impact on nurses’work is mainly in shortening the recording time,improving the quality of nursing diagnosis,reducing the incidence of nursing risk events,and so on.However,there is no authoritative standard for the NDSS at home and abroad.This review introduces development and challenges of EHRs and recommends the application of the NDSS in EHRs,namely the nursing assessment decision support system,the nursing diagnostic decision support system,and the nursing care planning decision support system(including nursing intervene),hoping to provide a new thought and method to structure impeccable EHRs.
文摘Computerized decision support(CDS) is the most advanced form of clinical decision support available and has evolved with innovative technologies to provide meaningful assistance to medical professionals. Critical care clinicians are in unique environments where vast amounts of data are collected on individual patients, and where expedient and accurate decisions are paramount to the delivery of quality healthcare. Many CDS tools are in use today among adult and pediatric intensive care units as diagnostic aides, safety alerts, computerized protocols, and automated recommendations for management. Some CDS use have significantly decreased adverse events and improved costs when carefully implemented and properly operated. CDS tools integrated into electronic health records are also valuable to researchers providing rapid identification of eligible patients, streamlining data-gathering and analysis, and providing cohorts for study of rare and chronic diseases through data-warehousing. Although the need for human judgment in the daily care of critically ill patients has limited the study and realization ofmeaningful improvements in overall patient outcomes, CDS tools continue to evolve and integrate into the daily workflow of clinicians, and will likely provide advancements over time. Through novel technologies, CDS tools have vast potential for progression and will significantly impact the field of critical care and clinical research in the future.
文摘This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.
文摘目的探讨临床决策支持系统(CDSS)在原发性肝癌患者围手术期护理中的应用价值。方法回顾性分析2022年1月至2023年10月河南省人民医院收治的48例围手术期接受常规护理的原发性肝癌患者资料,纳入对照组;采集同期医院收治的48例围手术期接受基于CDSS的护理管理的原发性肝癌患者资料,纳入观察组。查阅并比较两组护理质量(护理级别符合率、护理诊断正确率、护理处理及时率)、术后1、3、72 d时疼痛程度[采用疼痛数字评分法(NRS)评估]、护理期间并发症发生情况。结果观察组护理级别符合率、护理诊断正确率、护理处理及时率均高于对照组(P<0.05)。两组术后1、3、5 d NRS评分组间、时间、交互效应有统计学意义(P<0.05)。两组术后3、5 d NRS评分均较术后1 d高,术后5 d较术后3 d高(P<0.05)。两组术后1 d NRS评分差异无统计学意义(P>0.05),观察组术后3、5 d时NRS评分均低于对照组(P<0.05)。观察组护理期间并发症总发生率低于对照组(P<0.05)。结论基于CDSS的护理管理可提高原发性肝癌患者围手术期护理质量,减轻患者术后疼痛,降低术后并发症发生风险。