Relay in full-duplex(FD) mode can achieve higher spectrum efficiency than that in half-duplex mode,while it is crucial to suppress relay self-interference to ensure transmission quality which requires instantaneous ch...Relay in full-duplex(FD) mode can achieve higher spectrum efficiency than that in half-duplex mode,while it is crucial to suppress relay self-interference to ensure transmission quality which requires instantaneous channel state information(CSI). In this paper,the channel estimation issue in FD amplify-andforward relay networks is considered,where the training-based estimation technique is adopted. Firstly,the least square(LS) estimation is implemented to obtain composite channel coefficients of source-relay-destination(SRD) channel and relay loop-interference(LI) channel in order to assist destination in performing data detection. Secondly,both LS and maximum likelihood estimation methods are utilized to perform individual channel estimation aiming at supporting successive interference cancelation at destination. Finally,simulation results demonstrate the effectiveness of both composite and individual channel estimation,and the presented ML method can achieve lower MSEs than LS solution.展开更多
In this paper, a quasi-Newton method fbr semi-blind estimation is derived for channel estimation in uplink cloud radio access networks (C-RANs). Different from traditional pilot-aided estimation, semiblind estimatio...In this paper, a quasi-Newton method fbr semi-blind estimation is derived for channel estimation in uplink cloud radio access networks (C-RANs). Different from traditional pilot-aided estimation, semiblind estimation utilizes the unknown data symbols in addition to the known pilot symbols to estimate the channel. An initial channel state information (CSI) obtained by least-squared (LS) estimation is needed in semi-blind estimation. BFGS (Brayben, Fletcher, Goldfarb and Shanno) algorithm, which employs data as well as pilot symbols, estimates the CSI though solving the problem provided by maximum-likelihood (ML) principle. In addition, mean-square-error (MSE) used to evaluate the estimation performance can be further minimized with an optimal pilot design. Simulation results show that the semi-blind estimation achieves a significant improvement in terms of MSE performance over the conventional LS estimation by utilizing data symbols instead of increasing the number of pilot symbols, which demonstrates the estimation accuracy and spectral efficiency are both improved by semiblind estimation for C-RANs.展开更多
The cloud radio access network(C-RAN) has recently been proposed as an important component of the next generation wireless networks providing opportunities for improving both spectral and energy effi ciencies. The per...The cloud radio access network(C-RAN) has recently been proposed as an important component of the next generation wireless networks providing opportunities for improving both spectral and energy effi ciencies. The performance of this network structure is however constrained by severe inter-cell interference due to the limited capacity of fronthaul between the radio remote heads(RRH) and the base band unit(BBU) pool. To achieve performance improvement taking full advantage of centralized processing capabilities of C-RANs,a set of RRHs can jointly transmit data to the same UE for improved spectral effi ciency. In this paper,a user centralized joint coordinated transmission(UC-JCT) scheme is put forth to investigate the downlink performance of C-RANs. The most important benefit the proposed strategy is the ability to translate what would have been the most dominant interfering sources to usable signal leading to a signifi cantly improved performance. Stochastic geometry is utilized to model the randomness of RRH location and provides a reliable performance analysis. We derive an analytical expression for the closed integral form of the coverage probability of a typical UE. Simulation results confirm the accuracy of our analysis and demonstrate that significant performance gain can be achieved from the proposed coordination schemes.展开更多
云无线接入网络(cloud radio access network,C-RAN)是一种能够集中处理信号的网络架构。C-RAN能够通过算法动态选择无线电单元(remote radio head,RRH)来调整用户通信速率。而通信速率作为用户服务质量(quality of service,QoS)的关键...云无线接入网络(cloud radio access network,C-RAN)是一种能够集中处理信号的网络架构。C-RAN能够通过算法动态选择无线电单元(remote radio head,RRH)来调整用户通信速率。而通信速率作为用户服务质量(quality of service,QoS)的关键部分,当参与服务的RRH越多时,用户的通信速率更大且体验更好,但同时所带来的能源损耗越大,因此本文研究通信速率和功率消耗二者之间的权衡关系。提出一种优化算法,将权衡问题建模成一个单目标优化模型,通过权衡系数来协调速率和RRH激活个数之间的矛盾。为了解决l0-范数的非凸问题,本文使用重复加权l1-范数去近似l0-范数,同时使用加权最小均方误差(weighted minimum mean square error,WMMSE)的方法将通信速率从非凸问题转换成一个凸问题,最后使用改进的次梯度法对预编码矩阵进行更新。仿真结果证明该算法减少了时间复杂度,同时达到了与穷举法相近的性能。展开更多
利用FPGA(现场可编程门阵列)实现基于LTE(Long Term Evolution,长期演进)协议C-RAN(云无线接入网络)体系架构中的前端预处理单元来加速CRAN系统的处理速度。软件层运行在基带信号处理单元池中,并且和FPGA前端预处理单元协同完成基带信...利用FPGA(现场可编程门阵列)实现基于LTE(Long Term Evolution,长期演进)协议C-RAN(云无线接入网络)体系架构中的前端预处理单元来加速CRAN系统的处理速度。软件层运行在基带信号处理单元池中,并且和FPGA前端预处理单元协同完成基带信号处理的整个过程。其中FPGA前端预处理单元集成了丰富的接口资源,包括PCIE、10 Gb/s以太网口、CPRI(通用公共无线接口)接口,将传统的移动通信和高速数据处理单元有效连接起来。预处理单元通过完成基带处理中的关键算法来减轻服务器处理的压力。与此同时在预处理单元内完成循环前缀的去除和有效子载波数据的筛选,降低了系统的IO吞吐量。预处理单元已经完成了仿真与验证。展开更多
在云接入网络(Cloud Radio Access Network,C-RAN)架构中,传统的基站分为基带处理单元(Base Band Unit,BBU)和射频拉远头(Remote Radio Head,RRH),所有的RRH分布在远程站点共享运行在云中心的BBU资源池。现有的方案考虑的RRH只能将数据...在云接入网络(Cloud Radio Access Network,C-RAN)架构中,传统的基站分为基带处理单元(Base Band Unit,BBU)和射频拉远头(Remote Radio Head,RRH),所有的RRH分布在远程站点共享运行在云中心的BBU资源池。现有的方案考虑的RRH只能将数据传输到唯一归属的BBU上,导致不同的BBU之间不能共享数据。提出了一种基于C-RAN的BBU-RRH的动态调度方案(DSSC),BBU间通过借用资源的方式动态地给RRH分配资源。仿真结果表明,本文提出的方案可以有效地提高系统的吞吐量和频谱效率,减少了资源的浪费。展开更多
针对云无线网络(Cloud Radio Access Network,C-RAN)中传统静态资源分配效率低下以及动态无线资源分配中资源种类单一的问题,提出了一种基于用户服务质量(Qulity of Service,QoS)约束的动态无线资源分配方案,对无线资源从无线射频单元(R...针对云无线网络(Cloud Radio Access Network,C-RAN)中传统静态资源分配效率低下以及动态无线资源分配中资源种类单一的问题,提出了一种基于用户服务质量(Qulity of Service,QoS)约束的动态无线资源分配方案,对无线资源从无线射频单元(Remote Radio Head,RRH)选择、子载波分配和RRH功率分配三个维度进行研究。首先,根据传统的C-RAN系统传输模型和QoS约束在时变业务环境下建立了以发射功率为变量,以吞吐量最大为优化目标的优化问题;然后,基于改进的遗传算法,将原优化方案转变为通过优化RRH选择、子载波分配和RRH功率分配来达到提高系统吞吐量的目的;最后,将改进的遗传算法与其他智能算法在种群规模变化下进行了时间复杂度对比。实验结果表明,所提算法具有较低时间复杂度,所提资源分配方案下的平均吞吐量增益为17%。展开更多
This paper studies the effect of phase noise and fronthaul compression on a downlink cloud radio access network(C-RAN), where several remote radio heads(RRHs) are coordinated to communicate with users by a baseband un...This paper studies the effect of phase noise and fronthaul compression on a downlink cloud radio access network(C-RAN), where several remote radio heads(RRHs) are coordinated to communicate with users by a baseband unit(BBU) on the cloud server. In the system, the baseband signals are precoded at BBU, and then compressed before being transmitted to RRHs through capacity-limited fronthaul links which results in the compressive quantization noise. We assume the regularized zero-forcing precoding is performed with an imperfect channel state information and a compression strategy is applied at BBU. The effect of phase noise arising from nonideal local oscillators both at RRHs and users is considered. We propose an approximate expression for the downlink ergodic sum-rate of considered C-RAN utilizing large dimensional random matrix theory in the large-system regime. From simulation results, the accuracy of the approximate expression is validated, and the effect of phase noise and fronthaul compression can be analyzed theoretically based on the approximate expression.展开更多
Owing to the inherent central information processing and resource management ability,the cloud radio access network(C-RAN)is a promising network structure for an intelligent and simplified sixth-generation(6G)wireless...Owing to the inherent central information processing and resource management ability,the cloud radio access network(C-RAN)is a promising network structure for an intelligent and simplified sixth-generation(6G)wireless network.Nevertheless,to further enhance the capacity and coverage,more radio remote heads(RRHs)as well as high-fidelity and low-latency fronthaul links are required,which may lead to high implementation cost.To address this issue,we propose to exploit the intelligent reflecting surface(IRS)as an alternative way to enhance the C-RAN,which is a low-cost and energy-efficient option.Specifically,we consider the uplink transmission where multi-antenna users communicate with the baseband unit(BBU)pool through multi-antenna RRHs and multiple IRSs are deployed between the users and RRHs.RRHs can conduct either point-to-point(P2P)compression or Wyner-Ziv coding to compress the received signals,which are then forwarded to the BBU pool through fronthaul links.We investigate the joint design and optimization of user transmit beamformers,IRS passive beamformers,and fronthaul compression noise covariance matrices to maximize the uplink sum rate subject to fronthaul capacity constraints under P2P compression and Wyner-Ziv coding.By exploiting the Arimoto-Blahut algorithm and semi-definite relaxation(SDR),we propose a successive convex approximation approach to solve non-convex problems,and two iterative algorithms corresponding to P2P compression and Wyner-Ziv coding are provided.Numerical results verify the performance gain brought about by deploying IRS in C-RAN and the superiority of the proposed joint design.展开更多
The installation of small cells in a 5G network extends the maximum coverage and provides high availability.However,this approach increases the handover overhead in the Core Network(CN)due to frequent handoffs.The var...The installation of small cells in a 5G network extends the maximum coverage and provides high availability.However,this approach increases the handover overhead in the Core Network(CN)due to frequent handoffs.The variation of user density and movement inside a region of small cells also increases the handover overhead in CN.However,the present 5G system cannot reduce the handover overhead in CN under such circumstances because it relies on a traditionally rigid and complex hierarchical sequence for a handover procedure.Recently,Not Only Stack(NO Stack)architecture has been introduced for Radio Access Network(RAN)to reduce the signaling during handover.This paper proposes a system based on NO Stack architecture and solves the aforementioned problem by adding a dedicated local mobility controller to the edge cloud for each cluster.The dedicated cluster controller manages the user mobility locally inside a cluster and also maintains the forwarding data of a mobile user locally.To reduce the latency for X2-based handover requests,an edge cloud infrastructure has been also developed to provide high-computing for dedicated controllers at the edge of a cellular network.The proposed system is also compared with the traditional 3GPP architecture and other works in the context of overhead and delay caused by X2-based handover requests during user mobility.Simulated results show that the inclusion of a dedicated local controller for small clusters together with the implementation of NO Stack framework reduces the significant amount of overhead of X2-based handover requests at CN.展开更多
基金supported in part by the National High Technology Research and Development Program of China(Grant No.2014AA01A707)the Beijing Natural Science Foundation(Grant No.4131003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP)(Grant No.20120005140002)the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (KZ201511232036)
文摘Relay in full-duplex(FD) mode can achieve higher spectrum efficiency than that in half-duplex mode,while it is crucial to suppress relay self-interference to ensure transmission quality which requires instantaneous channel state information(CSI). In this paper,the channel estimation issue in FD amplify-andforward relay networks is considered,where the training-based estimation technique is adopted. Firstly,the least square(LS) estimation is implemented to obtain composite channel coefficients of source-relay-destination(SRD) channel and relay loop-interference(LI) channel in order to assist destination in performing data detection. Secondly,both LS and maximum likelihood estimation methods are utilized to perform individual channel estimation aiming at supporting successive interference cancelation at destination. Finally,simulation results demonstrate the effectiveness of both composite and individual channel estimation,and the presented ML method can achieve lower MSEs than LS solution.
基金supported in part by the the National High Technology Research and Devel-opment Program of China(Grant No.2014AA01A701)National Natural Science Foundation of China(Grant No.61361166005)+2 种基金the State Major Science and Technology Special Projects(Grant No.2016ZX03001020006)the National Program for Support of Top-notch Young Pro-fessionalsthe Science and Technology Development Project of Beijing Municipal Education Commission of China(Grant No.KZ201511232036)
文摘In this paper, a quasi-Newton method fbr semi-blind estimation is derived for channel estimation in uplink cloud radio access networks (C-RANs). Different from traditional pilot-aided estimation, semiblind estimation utilizes the unknown data symbols in addition to the known pilot symbols to estimate the channel. An initial channel state information (CSI) obtained by least-squared (LS) estimation is needed in semi-blind estimation. BFGS (Brayben, Fletcher, Goldfarb and Shanno) algorithm, which employs data as well as pilot symbols, estimates the CSI though solving the problem provided by maximum-likelihood (ML) principle. In addition, mean-square-error (MSE) used to evaluate the estimation performance can be further minimized with an optimal pilot design. Simulation results show that the semi-blind estimation achieves a significant improvement in terms of MSE performance over the conventional LS estimation by utilizing data symbols instead of increasing the number of pilot symbols, which demonstrates the estimation accuracy and spectral efficiency are both improved by semiblind estimation for C-RANs.
基金supported in part by the National Natural Science Foundation of China (Grant No. 61222103)the Beijing Natural Science Foundation (Grant No. 4131003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (Grant No. 20120005140002)the National High Technology Research and Development Program (863 Program) of China under Grant No. 2014AA01A707
文摘The cloud radio access network(C-RAN) has recently been proposed as an important component of the next generation wireless networks providing opportunities for improving both spectral and energy effi ciencies. The performance of this network structure is however constrained by severe inter-cell interference due to the limited capacity of fronthaul between the radio remote heads(RRH) and the base band unit(BBU) pool. To achieve performance improvement taking full advantage of centralized processing capabilities of C-RANs,a set of RRHs can jointly transmit data to the same UE for improved spectral effi ciency. In this paper,a user centralized joint coordinated transmission(UC-JCT) scheme is put forth to investigate the downlink performance of C-RANs. The most important benefit the proposed strategy is the ability to translate what would have been the most dominant interfering sources to usable signal leading to a signifi cantly improved performance. Stochastic geometry is utilized to model the randomness of RRH location and provides a reliable performance analysis. We derive an analytical expression for the closed integral form of the coverage probability of a typical UE. Simulation results confirm the accuracy of our analysis and demonstrate that significant performance gain can be achieved from the proposed coordination schemes.
文摘云无线接入网络(cloud radio access network,C-RAN)是一种能够集中处理信号的网络架构。C-RAN能够通过算法动态选择无线电单元(remote radio head,RRH)来调整用户通信速率。而通信速率作为用户服务质量(quality of service,QoS)的关键部分,当参与服务的RRH越多时,用户的通信速率更大且体验更好,但同时所带来的能源损耗越大,因此本文研究通信速率和功率消耗二者之间的权衡关系。提出一种优化算法,将权衡问题建模成一个单目标优化模型,通过权衡系数来协调速率和RRH激活个数之间的矛盾。为了解决l0-范数的非凸问题,本文使用重复加权l1-范数去近似l0-范数,同时使用加权最小均方误差(weighted minimum mean square error,WMMSE)的方法将通信速率从非凸问题转换成一个凸问题,最后使用改进的次梯度法对预编码矩阵进行更新。仿真结果证明该算法减少了时间复杂度,同时达到了与穷举法相近的性能。
文摘利用FPGA(现场可编程门阵列)实现基于LTE(Long Term Evolution,长期演进)协议C-RAN(云无线接入网络)体系架构中的前端预处理单元来加速CRAN系统的处理速度。软件层运行在基带信号处理单元池中,并且和FPGA前端预处理单元协同完成基带信号处理的整个过程。其中FPGA前端预处理单元集成了丰富的接口资源,包括PCIE、10 Gb/s以太网口、CPRI(通用公共无线接口)接口,将传统的移动通信和高速数据处理单元有效连接起来。预处理单元通过完成基带处理中的关键算法来减轻服务器处理的压力。与此同时在预处理单元内完成循环前缀的去除和有效子载波数据的筛选,降低了系统的IO吞吐量。预处理单元已经完成了仿真与验证。
文摘在云接入网络(Cloud Radio Access Network,C-RAN)架构中,传统的基站分为基带处理单元(Base Band Unit,BBU)和射频拉远头(Remote Radio Head,RRH),所有的RRH分布在远程站点共享运行在云中心的BBU资源池。现有的方案考虑的RRH只能将数据传输到唯一归属的BBU上,导致不同的BBU之间不能共享数据。提出了一种基于C-RAN的BBU-RRH的动态调度方案(DSSC),BBU间通过借用资源的方式动态地给RRH分配资源。仿真结果表明,本文提出的方案可以有效地提高系统的吞吐量和频谱效率,减少了资源的浪费。
文摘针对云无线网络(Cloud Radio Access Network,C-RAN)中传统静态资源分配效率低下以及动态无线资源分配中资源种类单一的问题,提出了一种基于用户服务质量(Qulity of Service,QoS)约束的动态无线资源分配方案,对无线资源从无线射频单元(Remote Radio Head,RRH)选择、子载波分配和RRH功率分配三个维度进行研究。首先,根据传统的C-RAN系统传输模型和QoS约束在时变业务环境下建立了以发射功率为变量,以吞吐量最大为优化目标的优化问题;然后,基于改进的遗传算法,将原优化方案转变为通过优化RRH选择、子载波分配和RRH功率分配来达到提高系统吞吐量的目的;最后,将改进的遗传算法与其他智能算法在种群规模变化下进行了时间复杂度对比。实验结果表明,所提算法具有较低时间复杂度,所提资源分配方案下的平均吞吐量增益为17%。
基金supported in part by the Natural Science Foundation of China (NSFC) under Grant U1805262, 61871446, and 61671251supported by NSFC under Grant 61625106 and Grant 61531011
文摘This paper studies the effect of phase noise and fronthaul compression on a downlink cloud radio access network(C-RAN), where several remote radio heads(RRHs) are coordinated to communicate with users by a baseband unit(BBU) on the cloud server. In the system, the baseband signals are precoded at BBU, and then compressed before being transmitted to RRHs through capacity-limited fronthaul links which results in the compressive quantization noise. We assume the regularized zero-forcing precoding is performed with an imperfect channel state information and a compression strategy is applied at BBU. The effect of phase noise arising from nonideal local oscillators both at RRHs and users is considered. We propose an approximate expression for the downlink ergodic sum-rate of considered C-RAN utilizing large dimensional random matrix theory in the large-system regime. From simulation results, the accuracy of the approximate expression is validated, and the effect of phase noise and fronthaul compression can be analyzed theoretically based on the approximate expression.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(Nos.LY21F010008 and LD21F010001)the National Natural Science Foundation of China(No.62171412)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University,China(No.2020D10)。
文摘Owing to the inherent central information processing and resource management ability,the cloud radio access network(C-RAN)is a promising network structure for an intelligent and simplified sixth-generation(6G)wireless network.Nevertheless,to further enhance the capacity and coverage,more radio remote heads(RRHs)as well as high-fidelity and low-latency fronthaul links are required,which may lead to high implementation cost.To address this issue,we propose to exploit the intelligent reflecting surface(IRS)as an alternative way to enhance the C-RAN,which is a low-cost and energy-efficient option.Specifically,we consider the uplink transmission where multi-antenna users communicate with the baseband unit(BBU)pool through multi-antenna RRHs and multiple IRSs are deployed between the users and RRHs.RRHs can conduct either point-to-point(P2P)compression or Wyner-Ziv coding to compress the received signals,which are then forwarded to the BBU pool through fronthaul links.We investigate the joint design and optimization of user transmit beamformers,IRS passive beamformers,and fronthaul compression noise covariance matrices to maximize the uplink sum rate subject to fronthaul capacity constraints under P2P compression and Wyner-Ziv coding.By exploiting the Arimoto-Blahut algorithm and semi-definite relaxation(SDR),we propose a successive convex approximation approach to solve non-convex problems,and two iterative algorithms corresponding to P2P compression and Wyner-Ziv coding are provided.Numerical results verify the performance gain brought about by deploying IRS in C-RAN and the superiority of the proposed joint design.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(1ITP-2021-2017-0-01633)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation)This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2016R1D1A1B01016322).
文摘The installation of small cells in a 5G network extends the maximum coverage and provides high availability.However,this approach increases the handover overhead in the Core Network(CN)due to frequent handoffs.The variation of user density and movement inside a region of small cells also increases the handover overhead in CN.However,the present 5G system cannot reduce the handover overhead in CN under such circumstances because it relies on a traditionally rigid and complex hierarchical sequence for a handover procedure.Recently,Not Only Stack(NO Stack)architecture has been introduced for Radio Access Network(RAN)to reduce the signaling during handover.This paper proposes a system based on NO Stack architecture and solves the aforementioned problem by adding a dedicated local mobility controller to the edge cloud for each cluster.The dedicated cluster controller manages the user mobility locally inside a cluster and also maintains the forwarding data of a mobile user locally.To reduce the latency for X2-based handover requests,an edge cloud infrastructure has been also developed to provide high-computing for dedicated controllers at the edge of a cellular network.The proposed system is also compared with the traditional 3GPP architecture and other works in the context of overhead and delay caused by X2-based handover requests during user mobility.Simulated results show that the inclusion of a dedicated local controller for small clusters together with the implementation of NO Stack framework reduces the significant amount of overhead of X2-based handover requests at CN.