The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can co...The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can compensate voltage sag/swell, reactive power compensation and harmonics in the linear and nonlinear loads. In this work, the off line drained data from conventional fuzzy logic controller. A novel control system with a Combined Neural Network (CNN) is used instead of the traditionally four fuzzy logic controllers. The performance of combined neural network controller compared with Proportional Integral (PI) controller and Fuzzy Logic Controller (FLC). The system performance is also verified experimentally.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
研究基于DCS(Distributed Control System)的燃气-蒸汽联合循环机组运行智能控制系统,确保机组安全运行的同时,提高机组整体运行效率。构建基于DCS的燃气-蒸汽联合循环机组运行智能控制框架,过程控制层的Mark VI系统、DCS系统根据监测...研究基于DCS(Distributed Control System)的燃气-蒸汽联合循环机组运行智能控制系统,确保机组安全运行的同时,提高机组整体运行效率。构建基于DCS的燃气-蒸汽联合循环机组运行智能控制框架,过程控制层的Mark VI系统、DCS系统根据监测数据变化实现机组设备、旁路等自动控制。SIS层接收联合循环机组监测数据后,将其作为基于深度神经网络故障诊断模型的输入,实现机组设备故障的识别。在检测到故障时触发联锁保护子系统动作,将停机指令下达给自动启停控制子系统,使机组停止运行。实验结果表明,该系统可实现燃气-蒸汽联合循环机组设备故障识别,在100次训练后,训练损失为0.1左右,F-Score指标最大值为0.93;故障工况下,该系统可根据预定逻辑实现燃气-蒸汽联合循环机组自动停机。展开更多
文摘The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can compensate voltage sag/swell, reactive power compensation and harmonics in the linear and nonlinear loads. In this work, the off line drained data from conventional fuzzy logic controller. A novel control system with a Combined Neural Network (CNN) is used instead of the traditionally four fuzzy logic controllers. The performance of combined neural network controller compared with Proportional Integral (PI) controller and Fuzzy Logic Controller (FLC). The system performance is also verified experimentally.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
文摘研究基于DCS(Distributed Control System)的燃气-蒸汽联合循环机组运行智能控制系统,确保机组安全运行的同时,提高机组整体运行效率。构建基于DCS的燃气-蒸汽联合循环机组运行智能控制框架,过程控制层的Mark VI系统、DCS系统根据监测数据变化实现机组设备、旁路等自动控制。SIS层接收联合循环机组监测数据后,将其作为基于深度神经网络故障诊断模型的输入,实现机组设备故障的识别。在检测到故障时触发联锁保护子系统动作,将停机指令下达给自动启停控制子系统,使机组停止运行。实验结果表明,该系统可实现燃气-蒸汽联合循环机组设备故障识别,在100次训练后,训练损失为0.1左右,F-Score指标最大值为0.93;故障工况下,该系统可根据预定逻辑实现燃气-蒸汽联合循环机组自动停机。