期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于双重约束的最优BN结构学习算法
1
作者 陈艺薇 邸若海 +3 位作者 王鹏 张新兰 张欢 许文 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2477-2490,共14页
针对现有基于动态规划的贝叶斯网络结构学习算法复杂度高、无法在合理时间内学习大规模网络的问题,提出基于双重约束的最优贝叶斯网络(Bayesian Network,BN)结构学习算法.首先,利用最大信息系数和马尔科夫毯限制条件独立性(Conditional ... 针对现有基于动态规划的贝叶斯网络结构学习算法复杂度高、无法在合理时间内学习大规模网络的问题,提出基于双重约束的最优贝叶斯网络(Bayesian Network,BN)结构学习算法.首先,利用最大信息系数和马尔科夫毯限制条件独立性(Conditional Independence,CI)测试的候选节点集合和约束集,得到邻居节点集合;其次,利用邻居节点集合约束父节点图的搜索过程,得到候选父节点集合,从候选父节点集合中取出每个节点的最优父集构造初始有向图;再次,利用Tarjan算法计算初始有向图中的强连通分量,得到节点块序;最后,利用节点块序约束节点序图的搜索过程,获得最优的BN结构.实验表明,相比于现有的5种基于动态规划的结构学习算法,本文提出的算法在精度稍微降低的前提下,极大幅度提高了算法的学习效率,如Sachs网络,本文提出的算法相对DPCMB(Dynamic Programming Constrained with Markov Blanket)算法降低了40.3%的时耗,算法精度下降了12.1%. 展开更多
关键词 贝叶斯网络 最大信息系数 条件独立性测试 马尔科夫毯
在线阅读 下载PDF
基于信息论的Bayesian网络结构学习算法研究 被引量:6
2
作者 聂文广 刘惟一 +1 位作者 杨运涛 杨明 《计算机应用》 CSCD 北大核心 2005年第1期1-3,10,共4页
Bayesian网是一种进行不确定性推理的有力工具,它结合图型理论和概率理论,可以方便地表示和计算我们感兴趣的事件概率,同时也是对实体之间依赖关系提供了一种紧凑、直观、有效的图形表示。文中基于信息论中测试信息独立理论,对Bayesian... Bayesian网是一种进行不确定性推理的有力工具,它结合图型理论和概率理论,可以方便地表示和计算我们感兴趣的事件概率,同时也是对实体之间依赖关系提供了一种紧凑、直观、有效的图形表示。文中基于信息论中测试信息独立理论,对Bayesian网中各结点进行条件独立(CI)测试,以发现各结点的条件依赖关系,并通过计算结点之间的互相依赖度以发现Bayesian网边的方向,从而构造Bayesian网结构,算法的计算复杂度只需要进行O(N2)次CI测试。 展开更多
关键词 BAYESIAN网络 结构学习 条件独立性 条件互信息 条件依赖度
在线阅读 下载PDF
基于互信息的适用于高维数据的因果推断算法 被引量:7
3
作者 张浩 郝志峰 +1 位作者 蔡瑞初 温雯 《计算机应用研究》 CSCD 北大核心 2015年第2期382-385,共4页
推断数据间存在的因果关系是很多科学领域中的一个基础问题。然而现在暂时还没有快速有效的方法对高维数据进行因果推断。为此,提出了一种基于互信息的适应于高维数据的因果推断算法,该算法采取将高维网络结构学习问题分解成每一个节点... 推断数据间存在的因果关系是很多科学领域中的一个基础问题。然而现在暂时还没有快速有效的方法对高维数据进行因果推断。为此,提出了一种基于互信息的适应于高维数据的因果推断算法,该算法采取将高维网络结构学习问题分解成每一个节点的因果网络结构学习问题的策略。在第一阶段,利用基于互信息的条件独立性测试算法寻找目标节点的父子节点;在第二阶段,利用一种混合的方向识别算法对目标节点与其父子节点之间的方向进行判别,所有节点迭代完后得到一个完整的因果网络。数据实验表明,该算法在高维数据的情况下要优于目前其他的算法。 展开更多
关键词 因果推断 因果网络 互信息 条件独立性测试
在线阅读 下载PDF
基于先验节点序学习贝叶斯网络结构的优化方法 被引量:9
4
作者 朱明敏 刘三阳 汪春峰 《自动化学报》 EI CSCD 北大核心 2011年第12期1514-1519,共6页
针对小样本数据集下学习贝叶斯网络(Bayesian networks,BN)结构的不足,以及随着条件集的增大,利用统计方法进行条件独立(Conditional independence,CI)测试不稳定等问题,提出了一种基于先验节点序学习网络结构的优化方法.新方法通过定... 针对小样本数据集下学习贝叶斯网络(Bayesian networks,BN)结构的不足,以及随着条件集的增大,利用统计方法进行条件独立(Conditional independence,CI)测试不稳定等问题,提出了一种基于先验节点序学习网络结构的优化方法.新方法通过定义优化目标函数和可行域空间,首次将贝叶斯网络结构学习问题转化为求解目标函数极值的数学规划问题,并给出最优解的存在性及唯一性证明,为贝叶斯网络的不断扩展研究提出了新的方案.理论证明以及实验结果显示了新方法的正确性和有效性. 展开更多
关键词 贝叶斯网络 优化模型 条件独立测试 结构学习 节点序
在线阅读 下载PDF
免疫遗传算法学习贝叶斯网等价类 被引量:4
5
作者 贾海洋 刘大有 +2 位作者 陈娟 关淞元 刘欣 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第1期48-56,共9页
针对遗传算法学习贝叶斯网存在的问题,提出一种基于骨架搜索的免疫遗传算法学习贝叶斯网等价类,该方法综合了基于约束和打分搜索的方法,可以在遗传过程中避免产生非法结构,并从骨架空间映射到等价类空间进行搜索.实验数据表明,免疫算子... 针对遗传算法学习贝叶斯网存在的问题,提出一种基于骨架搜索的免疫遗传算法学习贝叶斯网等价类,该方法综合了基于约束和打分搜索的方法,可以在遗传过程中避免产生非法结构,并从骨架空间映射到等价类空间进行搜索.实验数据表明,免疫算子的使用可有效缩小搜索空间规模,加快收敛速度,提高执行效率. 展开更多
关键词 贝叶斯网 结构学习 马尔科夫等价 免疫遗传算法 条件独立测试
在线阅读 下载PDF
基于贝叶斯网络的危险化学品道路运输事故分析 被引量:20
6
作者 朱婷 赵来军 王旭磊 《安全与环境学报》 CAS CSCD 北大核心 2016年第2期53-60,共8页
为研究危险化学品道路运输事故中各影响因素的结构关系及其重要程度,以2006—2012年162起事故数据为样本,借助贝叶斯网络进行事故影响因素间关系分析及概率推理。网络结构由D-S证据理论综合专家意见得出,并依据条件独立检验实施了修正;... 为研究危险化学品道路运输事故中各影响因素的结构关系及其重要程度,以2006—2012年162起事故数据为样本,借助贝叶斯网络进行事故影响因素间关系分析及概率推理。网络结构由D-S证据理论综合专家意见得出,并依据条件独立检验实施了修正;表征影响因素对事故影响程度的后验概率由EM算法学习并进行推理得到。研究结果描述了事故影响因素间复杂的作用关系,推理分析表明,最重要的3个直接因素依次为人的因素(0.558)、运输车辆和设备(0.318)、危险化学品包装及装卸(0.212),且目前降低运输事故的应对措施重点应放在对人的失误及运输企业的管理上。 展开更多
关键词 安全管理工程 危险化学品 贝叶斯网络 D-S证据理论 条件独立检验 EM算法
在线阅读 下载PDF
一种快速的贝叶斯网结构学习算法 被引量:9
7
作者 冀俊忠 刘椿年 阎静 《计算机研究与发展》 EI CSCD 北大核心 2007年第3期412-419,共8页
贝叶斯网是不确定性问题知识表达和推理中最重要的一个理论模型.迄今为止人们提出了许多贝叶斯网结构学习算法,基于约束满足和评分搜索相结合的混合方法是其中的一个研究热点.以I-B&B-MDL为基础,提出了一种快速的学习算法.新算法不... 贝叶斯网是不确定性问题知识表达和推理中最重要的一个理论模型.迄今为止人们提出了许多贝叶斯网结构学习算法,基于约束满足和评分搜索相结合的混合方法是其中的一个研究热点.以I-B&B-MDL为基础,提出了一种快速的学习算法.新算法不仅利用约束知识来压缩搜索空间,而且还用它作为启发知识来引导搜索.首先利用0阶和少量的1阶测试有效地限制搜索空间,获得网络候选的连接图,减少了独立性测试及对数据库的扫描次数,然后利用互信息作为启发性知识来引导搜索,增加了B&B搜索树的截断.在通用数据集上的实验表明:快速算法能够有效地处理大规模数据,且学习速度有较大改进. 展开更多
关键词 BAYESIAN网络 条件独立性测试 最小描述长度评分 分支限界技术
在线阅读 下载PDF
基于I-B&B-MDL的贝叶斯网结构学习改进算法 被引量:5
8
作者 冀俊忠 阎静 刘椿年 《北京工业大学学报》 CAS CSCD 北大核心 2006年第5期436-441,共6页
针对I-B&B-MDL算法的不足,提出了2点改进:一是仅利用0阶和部分1阶测试确定网络侯选连接图,在有效限制搜索空间的同时,减少了独立性测试及对数据库的扫描次数;二是利用互信息的启发性知识作为侯选父母节点排序,加大了B&B搜索树... 针对I-B&B-MDL算法的不足,提出了2点改进:一是仅利用0阶和部分1阶测试确定网络侯选连接图,在有效限制搜索空间的同时,减少了独立性测试及对数据库的扫描次数;二是利用互信息的启发性知识作为侯选父母节点排序,加大了B&B搜索树的截断,加速了搜索过程.在通用数据集上的实验结果表明,在保证学习精度的前提下,算法整体的时间性能比原算法有较大的改进. 展开更多
关键词 数据挖掘 知识表示 贝叶斯网络 条件独立测试 最小描述长度评分
在线阅读 下载PDF
基于条件独立性测试的贝叶斯网结构学习改进算法 被引量:3
9
作者 赵波 吴庆畅 +1 位作者 尹世堂 范菁 《云南民族大学学报(自然科学版)》 CAS 2011年第5期402-405,共4页
针对基于条件独立性测试贝叶斯网结构学习算法在删除完全图边时的不足,提出加入对节点x和y的互信息测试的改进算法,不但能充分考虑到D-分离原理中存在的3种图型结构,使学习到的网络结构更接近于解,而且还从一定程度上减少了三角团的存在... 针对基于条件独立性测试贝叶斯网结构学习算法在删除完全图边时的不足,提出加入对节点x和y的互信息测试的改进算法,不但能充分考虑到D-分离原理中存在的3种图型结构,使学习到的网络结构更接近于解,而且还从一定程度上减少了三角团的存在,从而也将低了确定边方向时出现环路的概率.并通过实验证明改进算法是有效、可行的. 展开更多
关键词 贝叶斯网 D-分离 条件独立测试 机器学习
在线阅读 下载PDF
基于贝叶斯改进结构算法的回转窑故障诊断模型研究 被引量:4
10
作者 刘彬 刘永记 +2 位作者 刘浩然 李雷 孙美婷 《中国机械工程》 EI CAS CSCD 北大核心 2017年第18期2143-2151,共9页
针对现有改进互信息爬山(MI&HC)算法精度低、耗时长及简化爬山(SHC)算法产生大量冗余边的问题,提出一种新的结构学习算法,即改进爬山(IHC)算法。通过计算互信息链得到贝叶斯初始结构,利用条件独立性测试以及对孤立节点进行处理来加... 针对现有改进互信息爬山(MI&HC)算法精度低、耗时长及简化爬山(SHC)算法产生大量冗余边的问题,提出一种新的结构学习算法,即改进爬山(IHC)算法。通过计算互信息链得到贝叶斯初始结构,利用条件独立性测试以及对孤立节点进行处理来加边补充贝叶斯初始结构得到完全结构,利用改进的爬山搜索算子对完全结构进行搜索直到得出最优结构。将该算法与爬山(HC)算法、MI&HC算法、SHC算法进行比较,仿真结果表明,IHC算法能够得到较高准确率的模型,时间开销最小而且产生的冗余边数远远少于SHC算法产生的冗余边数。最后基于IHC算法,结合某回转窑数据进行训练,得到了回转窑工艺参数的故障诊断模型,对回转窑的烧成带温度实现了较为准确的故障诊断。 展开更多
关键词 改进贝叶斯结构算法 互信息及条件独立性测试 故障诊断 水泥回转窑
在线阅读 下载PDF
一种通过结构边界进行贝叶斯网络学习的算法 被引量:1
11
作者 刘广怡 李鸥 张大龙 《电子与信息学报》 EI CSCD 北大核心 2015年第4期894-899,共6页
贝叶斯网络是智能算法领域重要的理论工具,其结构学习问题被认为是NP-hard问题。该文通过混合学习算法的方式,从分析低阶条件独立性测试提供的信息入手,给出了构造目标网络结构空间边界的方法,并给出了完整的证明。在此基础上执行打分... 贝叶斯网络是智能算法领域重要的理论工具,其结构学习问题被认为是NP-hard问题。该文通过混合学习算法的方式,从分析低阶条件独立性测试提供的信息入手,给出了构造目标网络结构空间边界的方法,并给出了完整的证明。在此基础上执行打分搜索算法获得最终的网络结构。仿真结果表明该算法与同类算法相比具有更高的精度和更好的执行效率。 展开更多
关键词 贝叶斯网络 结构学习 有向无圈图 条件独立
在线阅读 下载PDF
基于链模型和粒子群的贝叶斯网结构学习算法 被引量:3
12
作者 赵学武 冀俊忠 +1 位作者 程亮 刘椿年 《计算机工程》 CAS CSCD 北大核心 2011年第17期181-184,共4页
为提高学习贝叶斯网络结构的效率,提出一种基于链模型和粒子群的学习算法。利用包含贝叶斯网节点间因果关系信息的规则链模型来衡量拓扑序列的优劣,提高搜索的拓扑序列的质量,为粒子位置可选择的优化算法加上动态权重系数,平衡全局搜索... 为提高学习贝叶斯网络结构的效率,提出一种基于链模型和粒子群的学习算法。利用包含贝叶斯网节点间因果关系信息的规则链模型来衡量拓扑序列的优劣,提高搜索的拓扑序列的质量,为粒子位置可选择的优化算法加上动态权重系数,平衡全局搜索和局部搜索,提高算法的搜索能力。实验结果表明,与I-ACO-B算法相比,该算法不仅能获得更好的解,且收敛速度也有一定的提高。 展开更多
关键词 贝叶斯网结构学习 粒子群优化算法 拓扑序列 规则链模型 条件独立性测试
在线阅读 下载PDF
基于互信息学习贝叶斯网络等价类 被引量:2
13
作者 李冰寒 高晓利 刘三阳 《计算机应用研究》 CSCD 北大核心 2011年第1期81-83,94,共4页
由数据构造贝叶斯网络结构是NP-难问题,根据互信息和条件独立测试,提出了一种构建最优贝叶斯网络结构的新算法。数值实验表明,新算法能较快地确定出与数据匹配程度最高的网络结构,从而能更高效地学习贝叶斯网络结构。
关键词 数据挖掘 贝叶斯网络 结构学习 连通图 互信息 条件独立测试
在线阅读 下载PDF
一种快速因果网络骨架学习算法 被引量:3
14
作者 洪英汉 《南京理工大学学报》 EI CAS CSCD 北大核心 2016年第3期315-321,共7页
针对传统因果网络结构学习算法难以适用于高维网络的问题,该文提出1种快速且适用于高维网络的因果网络骨架构建算法。采取基于最大依赖性、最小冗余度的互信息加速策略,在2个节点间找出2个因果节点集,在这2个因果节点集的并集内分别对... 针对传统因果网络结构学习算法难以适用于高维网络的问题,该文提出1种快速且适用于高维网络的因果网络骨架构建算法。采取基于最大依赖性、最小冗余度的互信息加速策略,在2个节点间找出2个因果节点集,在这2个因果节点集的并集内分别对节点进行条件独立性测试。真实数据实验表明,在对高维网络进行结构学习时,该文算法的时间复杂度优于传统算法;由于减少了条件独立性测试的次数,提高了网络识别的准确率。 展开更多
关键词 因果网络 骨架 高维网络 因果节点集 条件独立性测试
在线阅读 下载PDF
基于互信息的贝叶斯网络结构学习算法 被引量:3
15
作者 陈一虎 《计算机工程与应用》 CSCD 2012年第13期39-43,52,共6页
结构学习是贝叶斯网络的重要分支之一,而由数据学习贝叶斯网络是NP-完全问题,提出了一个由数据学习贝叶斯网络的改进算法。该算法基于互信息知识构造初始无向图,并通过条件独立测试对无向边添加方向;同时提出了一个针对4节点环和5节点... 结构学习是贝叶斯网络的重要分支之一,而由数据学习贝叶斯网络是NP-完全问题,提出了一个由数据学习贝叶斯网络的改进算法。该算法基于互信息知识构造初始无向图,并通过条件独立测试对无向边添加方向;同时提出了一个针对4节点环和5节点环的局部优化方法来构造初始框架,最后利用贪婪搜索算法得到最优网络结构。数值实验结果表明,改进的算法无论是在BIC评分值,还是在结构的误差上都有一定的改善,并且在迭代次数、运行时间上均有明显降低,能较快地确定出与数据匹配程度最高的网络结构。 展开更多
关键词 贝叶斯网络 结构学习 互信息 条件独立性测试 贪婪搜索
在线阅读 下载PDF
一种基于因果网络的支持向量回归特征选择算法 被引量:1
16
作者 陈一明 《湖南师范大学自然科学学报》 CAS 北大核心 2015年第4期90-94,F0003,共6页
为了提高支持向量回归算法的学习能力,提出了一种基于因果网络的特征选择算法.该方法假设目标变量和特征候选集之间符合一个因果网络模型,然后利用基于条件独立性测试的方法对目标变量的直接影响特征进行识别,从候选特征集之中获取与目... 为了提高支持向量回归算法的学习能力,提出了一种基于因果网络的特征选择算法.该方法假设目标变量和特征候选集之间符合一个因果网络模型,然后利用基于条件独立性测试的方法对目标变量的直接影响特征进行识别,从候选特征集之中获取与目标变量有着直接因果关系的特征子集.虚拟和真实数据集上的实验结果表明,该特征选择算法适用于支持向量回归算法,优于目前其他算法. 展开更多
关键词 支持向量回归 特征选择 因果网络 条件独立性测试
在线阅读 下载PDF
基于拓扑信息加速马尔科夫毯学习 被引量:1
17
作者 傅顺开 苏致祯 +1 位作者 Sein Minn 吕天依 《计算机科学》 CSCD 北大核心 2015年第B11期42-48,共7页
目标变量的马尔科夫毯(MB)是用于预测其状态的最优特征子集。提出一种新的约束学习类MB推导算法FSMB,它遵循后向选择的搜索策略,并依赖条件独立(CI)测试删除任意结点对之间的伪连接。与传统约束学习类算法不同,FSMB能从已执行的CI测试... 目标变量的马尔科夫毯(MB)是用于预测其状态的最优特征子集。提出一种新的约束学习类MB推导算法FSMB,它遵循后向选择的搜索策略,并依赖条件独立(CI)测试删除任意结点对之间的伪连接。与传统约束学习类算法不同,FSMB能从已执行的CI测试推导出不同结点扮演d-分割(d-separation)结点的优先等级;而后基于该信息在未来优先执行条件集中包含高优先级结点的CI测试,从而更快速地判断并删除伪连接边。该策略可帮助快速缩小搜索空间,从而大大提升学习效率。基于仿真网络的实验研究显示,FSMB在计算效率上较经典的PCMB和IPC-MB有显著的提升,而学习效果相当;在面对较大网络结构时(比如100和200个结点),甚至比公认最快速的IAMB还节省近40%的计算量,但学习效果要远优于IAMB。基于16个UCI数据集和4个经典的分类模型的实验显示,基于FSMB输出的特征集合所训练模型的分类准确率普遍接近或高于基于原有特征全集训练所得模型。因此,FSMB是快速且有效的MB推导算法。 展开更多
关键词 马尔科夫毯 贝叶斯网络 局部搜索 结构学习 约束学习 条件独立测试
在线阅读 下载PDF
基于约束的局部-全局LWF链图结构学习算法
18
作者 曹付元 杨淑晶 +1 位作者 王雲霞 俞奎 《电子学报》 EI CAS CSCD 北大核心 2023年第6期1458-1467,共10页
LWF链图结构学习旨在发现链图中所有节点的父节点、子节点、邻居节点以及配偶节点.然而,目前最新的LWF链图结构学习算法是基于Growing-Shrinking(GS)思想得到节点的局部结构(即节点的马尔科夫毯)来学习全局网络结构,该类算法的条件独立... LWF链图结构学习旨在发现链图中所有节点的父节点、子节点、邻居节点以及配偶节点.然而,目前最新的LWF链图结构学习算法是基于Growing-Shrinking(GS)思想得到节点的局部结构(即节点的马尔科夫毯)来学习全局网络结构,该类算法的条件独立测试是以整个马尔科夫毯为条件集的,为了保证条件独立测试的可靠性,算法要求样本数量是马尔科夫毯大小的指数级,从而使得算法的数据效率较差.针对该问题,本文提出了一种基于约束的局部-全局LWF链图结构学习算法.该算法通过迭代的学习邻接集和配偶集来降低对数据样本量的要求;与此同时,在学习邻接集时采用后向策略保障了条件独立测试的正确性.算法的基本思想如下:首先学习网络中每个节点的马尔科夫毯,将节点马尔科夫毯学习拆分为学习邻接集和学习配偶集;然后利用节点的马尔科夫毯信息恢复网络骨架,根据链图复合体有向边的特点,利用条件独立测试确定网络复合体有向边,从而恢复链图结构.理论分析证明了该算法的正确性,在仿真数据集和标准数据集上的实验测试验证了算法的有效性. 展开更多
关键词 LWF链图 马尔科夫毯 条件独立测试 数据效率
在线阅读 下载PDF
基于低阶条件独立测试的因果网络结构学习方法
19
作者 洪英汉 郝志峰 +1 位作者 麦桂珍 陈平华 《广东工业大学学报》 CAS 2019年第5期14-19,共6页
基于条件约束的方法可从数据集中学习到变量间的因果关系,并构建出因果网络图.但是在高维数据情况下,基于条件约束方法的缺点是准确率较低且耗时多,从而严重影响此类方法在高维数据中的应用推广.因此,本文提出了一种基于低阶条件独立测... 基于条件约束的方法可从数据集中学习到变量间的因果关系,并构建出因果网络图.但是在高维数据情况下,基于条件约束方法的缺点是准确率较低且耗时多,从而严重影响此类方法在高维数据中的应用推广.因此,本文提出了一种基于低阶条件独立测试的因果网络结构学习方法,采用低阶条件独立测试来加速构建因果粗糙骨架;利用分裂?合并策略把高维网络分裂成若干个子网络,并进行因果网络结构学习以提高其准确率;最后整合成完整的因果网络图.实验结果均验证了该方法的可行性. 展开更多
关键词 因果结构学习 高维数据 低阶 条件独立测试
在线阅读 下载PDF
基于递归分解的因果结构学习算法
20
作者 蔡瑞初 张文辉 +1 位作者 乔杰 郝志峰 《计算机工程》 CAS CSCD 北大核心 2023年第3期87-94,共8页
在高维小样本场景下,针对现有基于约束的因果结构学习方法存在因果结构学习效率低、马尔可夫等价类的问题,以非线性非高斯的高维小样本为研究对象,提出一种基于递归分解的因果结构学习算法CADR。在高维小样本的因果结构学习效率方面,结... 在高维小样本场景下,针对现有基于约束的因果结构学习方法存在因果结构学习效率低、马尔可夫等价类的问题,以非线性非高斯的高维小样本为研究对象,提出一种基于递归分解的因果结构学习算法CADR。在高维小样本的因果结构学习效率方面,结合递归分解的思想,将高维变量集递归分解为多个更小的子集,直到无法再分解或子集的大小达到阈值为止。在该过程中,变量集的减少缩减了条件独立性检验的条件候选集的搜索空间,从而提高学习效率。同时,为进一步识别马尔可夫等价类,根据非线性非高斯模型的因果方向的不可逆性,通过判断拟合噪声项与原因变量是否独立来识别马尔可夫等价类的因果方向。在仿真数据和真实因果结构数据上的实验结果表明,CADR不仅提高条件独立性检验的效率,而且能有效地区分马尔可夫等价类,学习到更精确的因果结构,其中,在真实因果结构实验中,与现有Xie_rec、PC_ANM和Notear_Sob方法相比,F1评分提高5%~12%。 展开更多
关键词 因果关系发现 条件独立性检验 高维小样本 递归分解 马尔可夫等价类
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部