In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-tim...In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.展开更多
In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the...In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.展开更多
A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establ...A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.展开更多
In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal proces...In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.展开更多
The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and n...The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and necessary conditions of controllability and observability for such systems were derived. In terms of Lyapunov’s stability theory, using the theorems of Mittage-Leffler function in two parameters this paper directly derived the sufficient and necessary condition of stability for such systems. The results obtained are useful for the analysis and synthesis of fractional-order linear control systems.展开更多
An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at...An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.展开更多
Vessels,especially very large or ultra large crude carriers(VLCCs or ULCCs),often can only dock and leave the berth during high tide periods to prevent being stranded.Unfortunately,the current crude scheduling models ...Vessels,especially very large or ultra large crude carriers(VLCCs or ULCCs),often can only dock and leave the berth during high tide periods to prevent being stranded.Unfortunately,the current crude scheduling models do not take into account tidal conditions,which will seriously affect the feasibility of crude schedule.So we first focus on the docking and leaving operations under the tidal actions,and establish a new hybrid continuous-time mixed integer linear programming(MILP)model which incorporates global event based formulation and unit-specific event based formulation.Upon considering that the multiple blending of crude oil can easily cause the production fluctuating,there are some reasonable assumptions that storage tanks can only store pure crude,and charging tanks just can be refilled after being emptied,which helps us obtain a simple MILP model without composition discrepancy caused by crude blending.Two cases are used to demonstrate the efficacy of proposed scheduling model.The results show that the optimization schedule can minimize the demurrage of the vessels and the number of feeding changeovers of crude oil distillation units(CDUs).展开更多
In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to d...In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.展开更多
In this paper,the authors consider a sparse parameter estimation problem in continuoustime linear stochastic regression models using sampling data.Based on the compressed sensing(CS)method,the authors propose a compre...In this paper,the authors consider a sparse parameter estimation problem in continuoustime linear stochastic regression models using sampling data.Based on the compressed sensing(CS)method,the authors propose a compressed least squares(LS) algorithm to deal with the challenges of parameter sparsity.At each sampling time instant,the proposed compressed LS algorithm first compresses the original high-dimensional regressor using a sensing matrix and obtains a low-dimensional LS estimate for the compressed unknown parameter.Then,the original high-dimensional sparse unknown parameter is recovered by a reconstruction method.By introducing a compressed excitation assumption and employing stochastic Lyapunov function and martingale estimate methods,the authors establish the performance analysis of the compressed LS algorithm under the condition on the sampling time interval without using independence or stationarity conditions on the system signals.At last,a simulation example is provided to verify the theoretical results by comparing the standard and the compressed LS algorithms for estimating a high-dimensional sparse unknown parameter.展开更多
The scheduling of gasoline-blending operations is an important problem in the oil refining industry. Thisproblem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but alsonon-convex ...The scheduling of gasoline-blending operations is an important problem in the oil refining industry. Thisproblem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but alsonon-convex nonlinear behavior, due to the blending of various materials with different quality properties.In this work, a global optimization algorithm is proposed to solve a previously published continuous-timemixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimi-zation, the distribution problem, and several important operational features and constraints. The algorithmemploys piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation tech-nique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of oneof the variables in a bilinear term and generate convex relaxations for each partition. By increasing the num-ber of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates ofthe global solution. The algorithm is compared to two commercial global solvers and two heuristic methodsby solving four examples from the literature. Results show that the proposed global optimization algorithmperforms on par with commercial solvers but is not as fast as heuristic approaches.展开更多
This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of ...This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.展开更多
A new concept is presented to express the damping property of linear time-invariant systems, by the Lyapunov theorem in view of quadratic form-defined energy. Two definitions are introduced: damping energy function D(...A new concept is presented to express the damping property of linear time-invariant systems, by the Lyapunov theorem in view of quadratic form-defined energy. Two definitions are introduced: damping energy function D(X_0, X)=Ci∫_(x_0, x) x_idx_(i-1)and comprehensive damping coefficient η-min(Ci/a_(n-i)). It is concluded that (ⅰ) of the Hurwitz determinants, △_(x-1) is proportional to the damping effect of oscillating systems, (ⅱ) the comprehensive damping coefficients of linear time-invariant systems are derived as. piecewise rational fractions which can be easily calculated and (ⅲ) the damping torque coefficient obtained for synchronous machines is independent of ω.展开更多
Recently a novel algebraic method was proposed for linear continuous-time model identification,which has attracted extensive attention in the literature.This work reveals its connection to classic identification metho...Recently a novel algebraic method was proposed for linear continuous-time model identification,which has attracted extensive attention in the literature.This work reveals its connection to classic identification methods,discusses a limitation and presents a useful modification of the method.The discussions are supported by analysis and numerical experiments.展开更多
We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous...We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous and discrete times with any step size.展开更多
This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra...This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.展开更多
A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration o...A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration of these equations is usually complicated in practice for complex systems, where both the computational time and the memory storage become limit- ing factors. For this reason, low-storage Runge-Kutta methods become increasingly popular for the time integration. This work suggests a series of s-stage sth-order explicit Runge- Kutta methods specific for autonomous linear equations, which only requires two times of the memory storage for the state vector. We also introduce a 13-stage eighth-order scheme for autonomous linear equations, which has optimized stability region and is reduced to a fifth-order method for general equations. These methods exhibit significant performance improvements over the previous general-purpose low-stage schemes. As an example, we ap- ply the integrator to simulate the non-Markovian exciton dynamics in a 15-site linear chain consisting of perylene-bisimide derivatives.展开更多
A partial eigenstructure assignment method that keeps the open-loop stable eigenvalues and the corresponding eigenspace unchanged is presented. This method generalizes a large class of systems previous methods and can...A partial eigenstructure assignment method that keeps the open-loop stable eigenvalues and the corresponding eigenspace unchanged is presented. This method generalizes a large class of systems previous methods and can be applied to solve the constrained control problem for linear invariant continuous-time systems. Besides, it can be also applied to make a total eigenstructure assignment. Indeed, the problem of finding a stabilizing regulator matrix gain taking into account the asymmetrical control constraints is transformed to a Sylvester equation resolution. Examples are given to illustrate the obtained results.展开更多
With the rapid development of information technologies and cloud computing, sensor networks play an increasingly important role in our society. Over the past few decades, distributed observer theory has attracted unpr...With the rapid development of information technologies and cloud computing, sensor networks play an increasingly important role in our society. Over the past few decades, distributed observer theory has attracted unprecedented attention due to its wide potential applications in different areas. Meanwhile, various approaches and algorithms have been proposed and investigated. The design of distributed observers is one of the frontier topics of system and control research, which has the significant theoretical values and broad application prospects. This paper attempts to review the representative models and the corresponding approaches for distributed observer design in linear time-invariant(LTI) systems. Firstly, the research backgrounds and main advances of distributed observer designs are briefly reviewed. Then, recent results of distributed observer designs for discrete-time and continuous-time LTI multi-agent systems(MASs) are introduced in detail, respectively. Finally, the prospects and the future work directions of the design of distributed observers are put forward. The main purpose of this paper is to promote the emerging topic on the designs of distributed observers, with focuses on the interdisciplinary interest from technological sciences.展开更多
This paper focuses on the H optimal control problem in which the wholestate is available for feedback. We show that in attenuating the disturbance, the Hoptimal performance of dynamic state-feedback is no better than ...This paper focuses on the H optimal control problem in which the wholestate is available for feedback. We show that in attenuating the disturbance, the Hoptimal performance of dynamic state-feedback is no better than that of static state-feedback, which generalizes current results for linear time-invariant systems with no directtransmission from the disturbance and control input to the controlled output.展开更多
A quasi-Newton method (QNM) for solving an unconstrained optimization problem in infinite dimensional spaces is presented in this paper. We apply the QNM algorithm to an identification problem for a nonlinear system o...A quasi-Newton method (QNM) for solving an unconstrained optimization problem in infinite dimensional spaces is presented in this paper. We apply the QNM algorithm to an identification problem for a nonlinear system of differential equations, that is, to identify the parameter vector q = q(t) appearing in the following system of differential equations, based on the measurement of the state , where is a measurement operator. We give two examples to show the algorithm.展开更多
文摘In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.
基金supported in part by the National Key Research and Development Program of China(2018AAA0101502,2018YFB1702300)the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)。
文摘In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.
文摘A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.
基金Supported by the National Natural Science Foundation of China(61605218)National Defense Science and Technology Innovation Foundation of Chinese Academy of Sciences(CXJJ-17S023)
文摘In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.
基金Shanghai Science and Technology Devel-opm ent Funds ( No.0 1160 70 3 3)
文摘The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and necessary conditions of controllability and observability for such systems were derived. In terms of Lyapunov’s stability theory, using the theorems of Mittage-Leffler function in two parameters this paper directly derived the sufficient and necessary condition of stability for such systems. The results obtained are useful for the analysis and synthesis of fractional-order linear control systems.
基金Sponsored by 863 Project (Grant No.2002AA517020) Developing Fund of Shanghai Science Committee (Grant No.011607033).
文摘An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.
文摘Vessels,especially very large or ultra large crude carriers(VLCCs or ULCCs),often can only dock and leave the berth during high tide periods to prevent being stranded.Unfortunately,the current crude scheduling models do not take into account tidal conditions,which will seriously affect the feasibility of crude schedule.So we first focus on the docking and leaving operations under the tidal actions,and establish a new hybrid continuous-time mixed integer linear programming(MILP)model which incorporates global event based formulation and unit-specific event based formulation.Upon considering that the multiple blending of crude oil can easily cause the production fluctuating,there are some reasonable assumptions that storage tanks can only store pure crude,and charging tanks just can be refilled after being emptied,which helps us obtain a simple MILP model without composition discrepancy caused by crude blending.Two cases are used to demonstrate the efficacy of proposed scheduling model.The results show that the optimization schedule can minimize the demurrage of the vessels and the number of feeding changeovers of crude oil distillation units(CDUs).
基金This work was supported was supported in part by the European Union under grant NeCST.
文摘In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.
基金supported by the Major Key Project of Peng Cheng Laboratory under Grant No.PCL2023AS1-2Project funded by China Postdoctoral Science Foundation under Grant Nos.2022M722926 and2023T160605。
文摘In this paper,the authors consider a sparse parameter estimation problem in continuoustime linear stochastic regression models using sampling data.Based on the compressed sensing(CS)method,the authors propose a compressed least squares(LS) algorithm to deal with the challenges of parameter sparsity.At each sampling time instant,the proposed compressed LS algorithm first compresses the original high-dimensional regressor using a sensing matrix and obtains a low-dimensional LS estimate for the compressed unknown parameter.Then,the original high-dimensional sparse unknown parameter is recovered by a reconstruction method.By introducing a compressed excitation assumption and employing stochastic Lyapunov function and martingale estimate methods,the authors establish the performance analysis of the compressed LS algorithm under the condition on the sampling time interval without using independence or stationarity conditions on the system signals.At last,a simulation example is provided to verify the theoretical results by comparing the standard and the compressed LS algorithms for estimating a high-dimensional sparse unknown parameter.
基金Support by Ontario Research FoundationMc Master Advanced Control ConsortiumFundacao para a Ciência e Tecnologia(Investigador FCT 2013 program and project UID/MAT/04561/2013)
文摘The scheduling of gasoline-blending operations is an important problem in the oil refining industry. Thisproblem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but alsonon-convex nonlinear behavior, due to the blending of various materials with different quality properties.In this work, a global optimization algorithm is proposed to solve a previously published continuous-timemixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimi-zation, the distribution problem, and several important operational features and constraints. The algorithmemploys piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation tech-nique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of oneof the variables in a bilinear term and generate convex relaxations for each partition. By increasing the num-ber of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates ofthe global solution. The algorithm is compared to two commercial global solvers and two heuristic methodsby solving four examples from the literature. Results show that the proposed global optimization algorithmperforms on par with commercial solvers but is not as fast as heuristic approaches.
基金supported by the National Nature Science Foundation of China under Grants Nos.60934006 and 61104136the Shandong Provincial Natural Science Foundation under Grant No.ZR2010FQ002+1 种基金the School Foundation of Qufu Normal University under Grant No.XJ200913the Scientific Research Foundation of Qufu Normal University
文摘This paper is focused on formability of multi-agent systems (MASs). The problem is concerned with the existence of a protocol that has the ability to drive the MAS involved to the desired formation, and thus, is of essential importance in designing formation protocols. Formability of an MAS depends on several key factors: agents' dynamic structures, connectivity topology, properties of the desired formation and the admissible control set. Agents of the MASs considered here are described by a general continuous linear time-invariant (LTI) model. By using the matrix analysis and algebraic graph theory, some necessary and sufficient conditions on formability of LTI-MASs are obtained. These conditions characterize in some sense the relationship of formability, connectivity topology, formation properties and agent dynamics with respect to some typical and widely used admissible protocol sets.
文摘A new concept is presented to express the damping property of linear time-invariant systems, by the Lyapunov theorem in view of quadratic form-defined energy. Two definitions are introduced: damping energy function D(X_0, X)=Ci∫_(x_0, x) x_idx_(i-1)and comprehensive damping coefficient η-min(Ci/a_(n-i)). It is concluded that (ⅰ) of the Hurwitz determinants, △_(x-1) is proportional to the damping effect of oscillating systems, (ⅱ) the comprehensive damping coefficients of linear time-invariant systems are derived as. piecewise rational fractions which can be easily calculated and (ⅲ) the damping torque coefficient obtained for synchronous machines is independent of ω.
基金This work was supported in part by NTU[startup grant number M4080181.050]MOE AcRF[Tier 1 grant number RG 33/10 M4010492.050].
文摘Recently a novel algebraic method was proposed for linear continuous-time model identification,which has attracted extensive attention in the literature.This work reveals its connection to classic identification methods,discusses a limitation and presents a useful modification of the method.The discussions are supported by analysis and numerical experiments.
文摘We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous and discrete times with any step size.
基金Project supported by the National Natural Science Foundation ofChina (No. 60374028) and the Scientific Research Foundation forReturned Overseas Chinese Scholars Ministry of Education (No.[2004]176)
文摘This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.
基金This work is supported by the National Natural Science Foundation of China (No.21373064), the Program for Innovative Research Team of Guizhou Province (No.QKTD[2014]4021), and the Natural Sci- entific Foundation from Guizhou Provincial Department of Education (No.ZDXK[2014]IS). All the calculations were performed at Guizhou Provincial High- Performance Computing Center of Condensed Mate- rials and Molecular Simulation in Guizhou Education University.
文摘A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration of these equations is usually complicated in practice for complex systems, where both the computational time and the memory storage become limit- ing factors. For this reason, low-storage Runge-Kutta methods become increasingly popular for the time integration. This work suggests a series of s-stage sth-order explicit Runge- Kutta methods specific for autonomous linear equations, which only requires two times of the memory storage for the state vector. We also introduce a 13-stage eighth-order scheme for autonomous linear equations, which has optimized stability region and is reduced to a fifth-order method for general equations. These methods exhibit significant performance improvements over the previous general-purpose low-stage schemes. As an example, we ap- ply the integrator to simulate the non-Markovian exciton dynamics in a 15-site linear chain consisting of perylene-bisimide derivatives.
文摘A partial eigenstructure assignment method that keeps the open-loop stable eigenvalues and the corresponding eigenspace unchanged is presented. This method generalizes a large class of systems previous methods and can be applied to solve the constrained control problem for linear invariant continuous-time systems. Besides, it can be also applied to make a total eigenstructure assignment. Indeed, the problem of finding a stabilizing regulator matrix gain taking into account the asymmetrical control constraints is transformed to a Sylvester equation resolution. Examples are given to illustrate the obtained results.
基金supported in part by the National Key Research and Development Program of China(Grant No.2018AAA0101100)in part by the National Natural Science Foundation of China(Grant Nos.61621003,92067204 and 61903017)in part by the China Postdoctoral Science Foundation(Grant Nos.2020TQ0027 and 2020M680285)。
文摘With the rapid development of information technologies and cloud computing, sensor networks play an increasingly important role in our society. Over the past few decades, distributed observer theory has attracted unprecedented attention due to its wide potential applications in different areas. Meanwhile, various approaches and algorithms have been proposed and investigated. The design of distributed observers is one of the frontier topics of system and control research, which has the significant theoretical values and broad application prospects. This paper attempts to review the representative models and the corresponding approaches for distributed observer design in linear time-invariant(LTI) systems. Firstly, the research backgrounds and main advances of distributed observer designs are briefly reviewed. Then, recent results of distributed observer designs for discrete-time and continuous-time LTI multi-agent systems(MASs) are introduced in detail, respectively. Finally, the prospects and the future work directions of the design of distributed observers are put forward. The main purpose of this paper is to promote the emerging topic on the designs of distributed observers, with focuses on the interdisciplinary interest from technological sciences.
文摘This paper focuses on the H optimal control problem in which the wholestate is available for feedback. We show that in attenuating the disturbance, the Hoptimal performance of dynamic state-feedback is no better than that of static state-feedback, which generalizes current results for linear time-invariant systems with no directtransmission from the disturbance and control input to the controlled output.
基金This research is partially supported by the National Natural Science Foundation of China(No. 69774012).
文摘A quasi-Newton method (QNM) for solving an unconstrained optimization problem in infinite dimensional spaces is presented in this paper. We apply the QNM algorithm to an identification problem for a nonlinear system of differential equations, that is, to identify the parameter vector q = q(t) appearing in the following system of differential equations, based on the measurement of the state , where is a measurement operator. We give two examples to show the algorithm.