Neural networks excel at capturing local spatial patterns through convolutional modules,but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological signal...Neural networks excel at capturing local spatial patterns through convolutional modules,but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological signals.In this work,we propose a novel network named filtering module fully convolutional network(FM-FCN),which fuses traditional filtering techniques with neural networks to amplify physiological signals and suppress noise.First,instead of using a fully connected layer,we use an FCN to preserve the time-dimensional correlation information of physiological signals,enabling multiple cycles of signals in the network and providing a basis for signal processing.Second,we introduce the FM as a network module that adapts to eliminate unwanted interference,leveraging the structure of the filter.This approach builds a bridge between deep learning and signal processing methodologies.Finally,we evaluate the performance of FM-FCN using remote photoplethysmography.Experimental results demonstrate that FM-FCN outperforms the second-ranked method in terms of both blood volume pulse(BVP)signal and heart rate(HR)accuracy.It substantially improves the quality of BVP waveform reconstruction,with a decrease of 20.23%in mean absolute error(MAE)and an increase of 79.95%in signal-to-noise ratio(SNR).Regarding HR estimation accuracy,FM-FCN achieves a decrease of 35.85%in MAE,29.65%in error standard deviation,and 32.88%decrease in 95%limits of agreement width,meeting clinical standards for HR accuracy requirements.The results highlight its potential in improving the accuracy and reliability of vital sign measurement through high-quality BVP signal extraction.The codes and datasets are available online at https://github.com/zhaoqi106/FM-FCN.展开更多
Higher order accuracy is one of the well-known beneficial properties of the discontinu-ous Galerkin(DG)method.Furthermore,many studies have demonstrated the supercon-vergence property of the semi-discrete DG method.On...Higher order accuracy is one of the well-known beneficial properties of the discontinu-ous Galerkin(DG)method.Furthermore,many studies have demonstrated the supercon-vergence property of the semi-discrete DG method.One can take advantage of this super-convergence property by post-processing techniques to enhance the accuracy of the DG solution.The smoothness-increasing accuracy-conserving(SIAC)filter is a popular post-processing technique introduced by Cockburn et al.(Math.Comput.72(242):577-606,2003).It can raise the convergence rate of the DG solution(with a polynomial of degree k)from order k+1 to order 2k+1 in the L2 norm.This paper first investigates general basis functions used to construct the SIAC filter for superconvergence extraction.The generic basis function framework relaxes the SIAC filter structure and provides flexibility for more intricate features,such as extra smoothness.Second,we study the distribution of the basis functions and propose a new SIAC filter called compact SIAC filter that significantly reduces the support size of the original SIAC filter while preserving(or even improving)its ability to enhance the accuracy of the DG solution.We prove the superconvergence error estimate of the new SIAC filters.Numerical results are presented to confirm the theoretical results and demonstrate the performance of the new SIAC filters.展开更多
Deep convolutional networks have obtained remarkable achievements on various visual tasks due to their strong ability to learn a variety of features.A welltrained deep convolutional network can be compressed to 20%–4...Deep convolutional networks have obtained remarkable achievements on various visual tasks due to their strong ability to learn a variety of features.A welltrained deep convolutional network can be compressed to 20%–40%of its original size by removing filters that make little contribution,as many overlapping features are generated by redundant filters.Model compression can reduce the number of unnecessary filters but does not take advantage of redundant filters since the training phase is not affected.Modern networks with residual,dense connections and inception blocks are considered to be able to mitigate the overlap in convolutional filters,but do not necessarily overcome the issue.To do so,we propose a new training strategy,weight asynchronous update,which helps to significantly increase the diversity of filters and enhance the representation ability of the network.The proposed method can be widely applied to different convolutional networks without changing the network topology.Our experiments show that the stochastic subset of filters updated in different iterations can significantly reduce filter overlap in convolutional networks.Extensive experiments show that our method yields noteworthy improvements in neural network performance.展开更多
基金supported by Ministry of Science and Technology of the People’s Republic of China(STI2030-Major Projects 2021ZD0201900)National Natural Science Foundation of China(grant mo.12090052)+2 种基金Natural Science Foundation of Liaoning Province(grant no.2023-MS-288)Fundamental Research Funds for the Central Universities(grant no.20720230017)Basic Public Welfare Research Program of Zhejiang Province(grant no.LGF20F030005).
文摘Neural networks excel at capturing local spatial patterns through convolutional modules,but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological signals.In this work,we propose a novel network named filtering module fully convolutional network(FM-FCN),which fuses traditional filtering techniques with neural networks to amplify physiological signals and suppress noise.First,instead of using a fully connected layer,we use an FCN to preserve the time-dimensional correlation information of physiological signals,enabling multiple cycles of signals in the network and providing a basis for signal processing.Second,we introduce the FM as a network module that adapts to eliminate unwanted interference,leveraging the structure of the filter.This approach builds a bridge between deep learning and signal processing methodologies.Finally,we evaluate the performance of FM-FCN using remote photoplethysmography.Experimental results demonstrate that FM-FCN outperforms the second-ranked method in terms of both blood volume pulse(BVP)signal and heart rate(HR)accuracy.It substantially improves the quality of BVP waveform reconstruction,with a decrease of 20.23%in mean absolute error(MAE)and an increase of 79.95%in signal-to-noise ratio(SNR).Regarding HR estimation accuracy,FM-FCN achieves a decrease of 35.85%in MAE,29.65%in error standard deviation,and 32.88%decrease in 95%limits of agreement width,meeting clinical standards for HR accuracy requirements.The results highlight its potential in improving the accuracy and reliability of vital sign measurement through high-quality BVP signal extraction.The codes and datasets are available online at https://github.com/zhaoqi106/FM-FCN.
基金Funding for this work was partially supported by the National Natural Science Foundation of China(NSFC)under Grant no.11801062.
文摘Higher order accuracy is one of the well-known beneficial properties of the discontinu-ous Galerkin(DG)method.Furthermore,many studies have demonstrated the supercon-vergence property of the semi-discrete DG method.One can take advantage of this super-convergence property by post-processing techniques to enhance the accuracy of the DG solution.The smoothness-increasing accuracy-conserving(SIAC)filter is a popular post-processing technique introduced by Cockburn et al.(Math.Comput.72(242):577-606,2003).It can raise the convergence rate of the DG solution(with a polynomial of degree k)from order k+1 to order 2k+1 in the L2 norm.This paper first investigates general basis functions used to construct the SIAC filter for superconvergence extraction.The generic basis function framework relaxes the SIAC filter structure and provides flexibility for more intricate features,such as extra smoothness.Second,we study the distribution of the basis functions and propose a new SIAC filter called compact SIAC filter that significantly reduces the support size of the original SIAC filter while preserving(or even improving)its ability to enhance the accuracy of the DG solution.We prove the superconvergence error estimate of the new SIAC filters.Numerical results are presented to confirm the theoretical results and demonstrate the performance of the new SIAC filters.
基金the National Natural Science Foundation of China under Grant No.61702350。
文摘Deep convolutional networks have obtained remarkable achievements on various visual tasks due to their strong ability to learn a variety of features.A welltrained deep convolutional network can be compressed to 20%–40%of its original size by removing filters that make little contribution,as many overlapping features are generated by redundant filters.Model compression can reduce the number of unnecessary filters but does not take advantage of redundant filters since the training phase is not affected.Modern networks with residual,dense connections and inception blocks are considered to be able to mitigate the overlap in convolutional filters,but do not necessarily overcome the issue.To do so,we propose a new training strategy,weight asynchronous update,which helps to significantly increase the diversity of filters and enhance the representation ability of the network.The proposed method can be widely applied to different convolutional networks without changing the network topology.Our experiments show that the stochastic subset of filters updated in different iterations can significantly reduce filter overlap in convolutional networks.Extensive experiments show that our method yields noteworthy improvements in neural network performance.