In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expectation efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis a...In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expectation efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis and research. Through analyzing the study of 30 groups of 0-1 knapsack problem from discrete coefficient of the data, we can find that dynamic expectation model can solve the following two types of knapsack problem. Compared to artificial glowworm swam algorithm, the convergence speed of this algorithm is ten times as fast as that of artificial glowworm swam algorithm, and the storage space of this algorithm is one quarter that of artificial glowworm swam algorithm. To sum up, it can be widely used in practical problems.展开更多
集值折扣{0-1}背包问题(Discounted{0-1}Knapsack Problem with Setup,D{0-1}KPS)指在同一类别中可选择多个项,每个类别对目标函数和约束条件都增加了额外的固定设置成本。提出一种求解D{0-1}KPS的改进动态规划算法,算法针对D{0-1}KPS...集值折扣{0-1}背包问题(Discounted{0-1}Knapsack Problem with Setup,D{0-1}KPS)指在同一类别中可选择多个项,每个类别对目标函数和约束条件都增加了额外的固定设置成本。提出一种求解D{0-1}KPS的改进动态规划算法,算法针对D{0-1}KPS问题本身结构特征,融合多目标优化问题中非支配解集思想,通过利用状态之间的支配与非支配关系,对每个阶段的状态集进行剪枝,形成非支配状态集,从而提出改进动态规划算法。通过实例验证了该算法的有效性和可行性。展开更多
群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的...群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的贪婪修复与优化方法(group greedy repair and optimization algorithm,GGROA),并进一步构造PSO-GGRDKP算法(PSO based GGROA for solving D{0-1}KP)以探究GGROA方法的可行性和性能。PSO-NGROADKP(PSO based NGROA for solving D{0-1}KP)和PSO-GRDKP(PSO based GROA for solving D{0-1}KP)是基于项贪心修复与优化方法的粒子群算法。在D{0-1}KP标准数据集的实验结果表明:与PSO-NGROADKP和PSO-GRDKP相比,PSO-GGRDKP算法的解误差率略高,但算法时间性能分别提升了13.8%、12.9%。展开更多
A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet...A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet assignment, subject to the constraints of coverage, aircraft flow balance, fleet size, aircraft availability, aircraft usage, flight restriction, aircraft seat capacity, and stopover. Then the branch-and-bound algorithm based on special ordered set was applied to solve the model. At last, a real- wofld case study on an airline with 5 fleets, 48 aircrafts and 1 786 flight legs indicated that the profit increase was ¥ 1 591276 one week and the running time was no more than 4 rain, which shows that the model and algorithm are fairly good for domestic airline.展开更多
It is well known that general 0-1 programming problems are NP-Complete and their optimal solutions cannot be found with polynomial-time algorithms unless P=NP. In this paper, we identify a specific class of 0-1 progra...It is well known that general 0-1 programming problems are NP-Complete and their optimal solutions cannot be found with polynomial-time algorithms unless P=NP. In this paper, we identify a specific class of 0-1 programming problems that is polynomially solvable, and propose two polynomial-time algorithms to find its optimal solutions. This class of 0-1 programming problems commits to a wide range of real-world industrial applications. We provide an instance of representative in the field of supply chain management.展开更多
文摘In order to optimize the knapsack problem further, this paper proposes an innovative model based on dynamic expectation efficiency, and establishes a new optimization algorithm of 0-1 knapsack problem after analysis and research. Through analyzing the study of 30 groups of 0-1 knapsack problem from discrete coefficient of the data, we can find that dynamic expectation model can solve the following two types of knapsack problem. Compared to artificial glowworm swam algorithm, the convergence speed of this algorithm is ten times as fast as that of artificial glowworm swam algorithm, and the storage space of this algorithm is one quarter that of artificial glowworm swam algorithm. To sum up, it can be widely used in practical problems.
文摘集值折扣{0-1}背包问题(Discounted{0-1}Knapsack Problem with Setup,D{0-1}KPS)指在同一类别中可选择多个项,每个类别对目标函数和约束条件都增加了额外的固定设置成本。提出一种求解D{0-1}KPS的改进动态规划算法,算法针对D{0-1}KPS问题本身结构特征,融合多目标优化问题中非支配解集思想,通过利用状态之间的支配与非支配关系,对每个阶段的状态集进行剪枝,形成非支配状态集,从而提出改进动态规划算法。通过实例验证了该算法的有效性和可行性。
文摘群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的贪婪修复与优化方法(group greedy repair and optimization algorithm,GGROA),并进一步构造PSO-GGRDKP算法(PSO based GGROA for solving D{0-1}KP)以探究GGROA方法的可行性和性能。PSO-NGROADKP(PSO based NGROA for solving D{0-1}KP)和PSO-GRDKP(PSO based GROA for solving D{0-1}KP)是基于项贪心修复与优化方法的粒子群算法。在D{0-1}KP标准数据集的实验结果表明:与PSO-NGROADKP和PSO-GRDKP相比,PSO-GGRDKP算法的解误差率略高,但算法时间性能分别提升了13.8%、12.9%。
基金The National Natural Science Foundationof China (70473037)
文摘A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet assignment, subject to the constraints of coverage, aircraft flow balance, fleet size, aircraft availability, aircraft usage, flight restriction, aircraft seat capacity, and stopover. Then the branch-and-bound algorithm based on special ordered set was applied to solve the model. At last, a real- wofld case study on an airline with 5 fleets, 48 aircrafts and 1 786 flight legs indicated that the profit increase was ¥ 1 591276 one week and the running time was no more than 4 rain, which shows that the model and algorithm are fairly good for domestic airline.
基金supported by National Natural Science Foundation of China (Grant Nos.70471008, 70971072)
文摘It is well known that general 0-1 programming problems are NP-Complete and their optimal solutions cannot be found with polynomial-time algorithms unless P=NP. In this paper, we identify a specific class of 0-1 programming problems that is polynomially solvable, and propose two polynomial-time algorithms to find its optimal solutions. This class of 0-1 programming problems commits to a wide range of real-world industrial applications. We provide an instance of representative in the field of supply chain management.