期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
Improved Hybrid Deep Collaborative Filtering Approach for True Recommendations 被引量:1
1
作者 Muhammad Ibrahim Imran Sarwar Bajwa +3 位作者 Nadeem Sarwar Haroon Abdul Waheed Muhammad Zulkifl Hasan Muhammad Zunnurain Hussain 《Computers, Materials & Continua》 SCIE EI 2023年第3期5301-5317,共17页
Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep lear... Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep learning approaches for capturing user and product information from a short text.However,such previously used approaches do not fairly and efficiently incorporate users’preferences and product characteristics.The proposed novel Hybrid Deep Collaborative Filtering(HDCF)model combines deep learning capabilities and deep interaction modeling with high performance for True Recommendations.To overcome the cold start problem,the new overall rating is generated by aggregating the Deep Multivariate Rating DMR(Votes,Likes,Stars,and Sentiment scores of reviews)from different external data sources because different sites have different rating scores about the same product that make confusion for the user to make a decision,either product is truly popular or not.The proposed novel HDCF model consists of four major modules such as User Product Attention,Deep Collaborative Filtering,Neural Sentiment Classifier,and Deep Multivariate Rating(UPA-DCF+NSC+DMR)to solve the addressed problems.Experimental results demonstrate that our novel model is outperforming state-of-the-art IMDb,Yelp2013,and Yelp2014 datasets for the true top-n recommendation of products using HDCF to increase the accuracy,confidence,and trust of recommendation services. 展开更多
关键词 Neural sentiment classification user product attention deep collaborative filtering multivariate rating artificial intelligence
在线阅读 下载PDF
Deep Learning Enabled Autoencoder Architecture for Collaborative Filtering Recommendation in IoT Environment 被引量:1
2
作者 Thavavel Vaiyapuri 《Computers, Materials & Continua》 SCIE EI 2021年第7期487-503,共17页
The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means t... The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means that people face unprecedented difficulties in spontaneously selecting the most appropriate services.Thus,there is a paramount need for a recommendation system that can help improve the experience of the users of IoT services to ensure the best quality of service.Most of the existing techniques—including collaborative filtering(CF),which is most widely adopted when building recommendation systems—suffer from rating sparsity and cold-start problems,preventing them from providing high quality recommendations.Inspired by the great success of deep learning in a wide range of fields,this work introduces a deep-learning-enabled autoencoder architecture to overcome the setbacks of CF recommendations.The proposed deep learning model is designed as a hybrid architecture with three key networks,namely autoencoder(AE),multilayered perceptron(MLP),and generalized matrix factorization(GMF).The model employs two AE networks to learn deep latent feature representations of users and items respectively and in parallel.Next,MLP and GMF networks are employed to model the linear and non-linear user-item interactions respectively with the extracted latent user and item features.Finally,the rating prediction is performed based on the idea of ensemble learning by fusing the output of the GMF and MLP networks.We conducted extensive experiments on two benchmark datasets,MoiveLens100K and MovieLens1M,using four standard evaluation metrics.Ablation experiments were conducted to confirm the validity of the proposed model and the contribution of each of its components in achieving better recommendation performance.Comparative analyses were also carried out to demonstrate the potential of the proposed model in gaining better accuracy than the existing CF methods with resistance to rating sparsity and cold-start problems. 展开更多
关键词 Neural collaborative filtering cold-start problem data sparsity multilayer perception generalized matrix factorization autoencoder deep learning ensemble learning top-K recommendations
在线阅读 下载PDF
融合项目评分不确定度的多属性深度神经协同推荐模型
3
作者 李昌兵 王霞 邓江洲 《重庆理工大学学报(自然科学)》 北大核心 2025年第1期75-82,共8页
现有大多数深度学习推荐模型只使用用户的单一评分信息进行模型训练,忽视了用户在项目不同属性上的偏好行为,这在一定程度上影响推荐准确性。为此,提出一种融合项目评分不确定度的多属性深度神经协同推荐模型来学习用户在项目各属性上... 现有大多数深度学习推荐模型只使用用户的单一评分信息进行模型训练,忽视了用户在项目不同属性上的偏好行为,这在一定程度上影响推荐准确性。为此,提出一种融合项目评分不确定度的多属性深度神经协同推荐模型来学习用户在项目各属性上的评分行为,高效捕捉用户的多维度偏好特征。为使模型能充分考虑用户对项目各属性的评分分布一致性,引入项目评分不确定度来提取项目的个性化属性特征,并将其作为多属性评分的权重因子来修正模型的初始预测结果。利用修正后的多属性评分来预测用户偏好,证明所提模型能为用户提供更为准确的推荐。在2个真实数据集上的实验结果表明:相较于次优对比方法,所提模型在评估指标F 1和NDCG方面分别最高增长4.3%和3.9%,模型的推荐能力强,能提高推荐质量。 展开更多
关键词 项目评分不确定度 多属性推荐模型 深度神经网络 协同过滤
在线阅读 下载PDF
A Deep Neural Collaborative Filtering Based Service Recommendation Method with Multi-Source Data for Smart Cloud-Edge Collaboration Applications 被引量:2
4
作者 Wenmin Lin Min Zhu +4 位作者 Xinyi Zhou Ruowei Zhang Xiaoran Zhao Shigen Shen Lu Sun 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第3期897-910,共14页
Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and... Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods. 展开更多
关键词 deep neural collaborative filtering multi-source data cloud-edge collaboration application stackeddenoising auto encoder multiple layer perceptron
原文传递
结合矩阵补全的宽度协同过滤推荐算法 被引量:1
5
作者 史加荣 何攀 《智能系统学报》 CSCD 北大核心 2024年第2期299-306,共8页
协同过滤是推荐系统中最经典的方法之一,能够满足人们对个性化推荐任务的需求,但许多协同过滤算法在面对评分数据稀疏性问题时推荐效果不佳。为解决此问题,提出一种结合矩阵补全的宽度协同过滤推荐算法。先使用矩阵补全技术对用户项目... 协同过滤是推荐系统中最经典的方法之一,能够满足人们对个性化推荐任务的需求,但许多协同过滤算法在面对评分数据稀疏性问题时推荐效果不佳。为解决此问题,提出一种结合矩阵补全的宽度协同过滤推荐算法。先使用矩阵补全技术对用户项目评分矩阵进行补全,再利用补全后的矩阵对已评分的用户和项目分别寻找其近邻项,进而构造用户与项目的评分协同向量,最后使用宽度学习系统来构建用户项目与评分之间的复杂的非线性关系。在MovieLens和filmtrust数据集上对所提出算法的有效性进行检验。试验结果表明,与当前最先进的方法相比,该方法能够有效地缓解数据稀疏性问题,具有较低的计算复杂度,在一定程度上提升了推荐系统的性能。 展开更多
关键词 推荐系统 宽度学习系统 矩阵补全 宽度协同过滤 协同过滤 深度矩阵分解 数据稀疏性 深度学习
在线阅读 下载PDF
基于SE模块的神经协同过滤
6
作者 邵必林 刘铮 +1 位作者 孙皓雨 张新生 《电子设计工程》 2024年第14期30-34,39,共6页
基于传统推荐方法对辅助信息利用不足,为优化用户、项目间内在联系挖掘有限等问题,采用将Squeeze-and-Excitation Networks结构嵌入神经协同过滤的方法提出SE-NCF模型,利用SE模块学习权重,去除不同特征中权重较低的噪声来实现特征融合,... 基于传统推荐方法对辅助信息利用不足,为优化用户、项目间内在联系挖掘有限等问题,采用将Squeeze-and-Excitation Networks结构嵌入神经协同过滤的方法提出SE-NCF模型,利用SE模块学习权重,去除不同特征中权重较低的噪声来实现特征融合,通过神经协同过滤层获得用户-项目间的线性与非线性关系,实现模型优化。通过茶评与Amazon_Food两公开数据集对同类推荐方法进行实验,实验结果表明,相比于原神经协同过滤,SE-NCF模型在两数据集中MSE指标与NDCG指标均得到改善,在茶评数据集下MSE降低10%,NDCG提升5.1%;在Amazon_Food下MSE降低4.3%,NDCG提升9.3%。 展开更多
关键词 推荐系统 协同过滤 特征融合 深度学习
在线阅读 下载PDF
一种跨区域跨评分协同过滤推荐算法
7
作者 于旭 彭庆龙 +6 位作者 詹定佳 杜军威 刘金环 林俊宇 巩敦卫 张子迎 于婕 《计算机研究与发展》 EI CSCD 北大核心 2024年第12期3134-3153,共20页
传统跨评分协同过滤范式忽视了目标域中评分密度对用户和项目隐向量精度的影响,导致评分稀疏区域评分预测不够准确.为克服区域评分密度对评分预测的影响,基于迁移学习思想提出一种跨区域跨评分协同过滤推荐算法(cross-rating collaborat... 传统跨评分协同过滤范式忽视了目标域中评分密度对用户和项目隐向量精度的影响,导致评分稀疏区域评分预测不够准确.为克服区域评分密度对评分预测的影响,基于迁移学习思想提出一种跨区域跨评分协同过滤推荐算法(cross-rating collaborative filtering recommendation algorithm,CRCRCF),相对于传统跨评分协同过滤范式,该算法不仅能有效挖掘辅助域重要知识,而且可以挖掘目标域中评分密集区域的重要知识,进一步提升目标域整体,尤其是评分稀疏区域的评分预测精度.首先,针对用户和项目,分别进行活跃用户和非活跃用户、热门项目和非热门项目的划分.利用图卷积矩阵补全算法提取目标域活跃用户和热门项目、辅助域中全体用户和项目的隐向量.其次,对活跃用户和热门项目分别构建基于自教学习的深度回归网络学习目标域和辅助域中隐向量的映射关系.然后,将映射关系泛化到全局,利用非活跃用户和非热门项目在辅助域上相对较准确的隐向量推导其目标域上的隐向量,依次实现了跨区域映射关系迁移和跨评分的隐向量信息迁移.最后,以求得的非活跃用户和非热门项目在目标域上的隐向量为约束,提出受限图卷积矩阵补全模型,并给出相应推荐结果.在MovieLens和Netflix数据集上的仿真实验显示CRCRCF算法较其他最先进算法具有明显优势. 展开更多
关键词 协同过滤 跨区域跨评分推荐 图卷积矩阵补全 自教学习 深度回归网络 受限图卷积矩阵补全
在线阅读 下载PDF
体育院校中智慧图书馆的个性化阅读推荐系统设计
8
作者 钱秋羽 毕梧琼 王璐 《科技资讯》 2024年第23期225-227,共3页
围绕体育学院智慧图书馆,针对用户的特定需求,构建并实施了个性化阅读推荐系统。综合考虑用户行为和深入分析图书馆资源,提出了一种融合协同过滤、内容筛选与深度学习技术的综合推荐策略,以增强用户体验并提升资源使用效率。实验结果显... 围绕体育学院智慧图书馆,针对用户的特定需求,构建并实施了个性化阅读推荐系统。综合考虑用户行为和深入分析图书馆资源,提出了一种融合协同过滤、内容筛选与深度学习技术的综合推荐策略,以增强用户体验并提升资源使用效率。实验结果显示,采用此推荐系统后,用户满意度提升了25%,并且图书馆资源的利用频次显著增长。 展开更多
关键词 智能图书馆 个性化推荐 用户行为分析 协同筛选 深度学习技术
在线阅读 下载PDF
A new item-based deep network structure using a restricted Boltzmann machine for collaborative filtering 被引量:5
9
作者 Yong-ping DU Chang-qing YAO +1 位作者 Shu-hua HUO Jing-xuan LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第5期658-666,共9页
The collaborative filtering(CF) technique has been widely used recently in recommendation systems. It needs historical data to give predictions. However, the data sparsity problem still exists. We propose a new item-b... The collaborative filtering(CF) technique has been widely used recently in recommendation systems. It needs historical data to give predictions. However, the data sparsity problem still exists. We propose a new item-based restricted Boltzmann machine(RBM) approach for CF and use the deep multilayer RBM network structure, which alleviates the data sparsity problem and has excellent ability to extract features. Each item is treated as a single RBM, and different items share the same weights and biases. The parameters are learned layer by layer in the deep network. The batch gradient descent algorithm with minibatch is used to increase the convergence speed. The new feature vector discovered by the multilayer RBM network structure is very effective in predicting a rating and achieves a better result. Experimental results on the data set of MovieL ens show that the item-based multilayer RBM approach achieves the best performance, with a mean absolute error of 0.6424 and a root-mean-square error of 0.7843. 展开更多
关键词 Restricted Boltzmann machine deep network structure collaborative filtering Recommendation system
原文传递
基于协同过滤和深度学习的信息分析算法 被引量:1
10
作者 刘承佳 吴鹏 郑晓娟 《电子设计工程》 2024年第3期92-96,共5页
针对在结构复杂的大型人力资源数据库中,传统协同过滤算法存在冷启动的问题,文中开发了一种数据信息的综合分析算法。该算法在传统协同过滤算法的基础上融合了深度学习模型,采用栈式去噪自编码器和概率矩阵分解模型求出项目的隐语义矩... 针对在结构复杂的大型人力资源数据库中,传统协同过滤算法存在冷启动的问题,文中开发了一种数据信息的综合分析算法。该算法在传统协同过滤算法的基础上融合了深度学习模型,采用栈式去噪自编码器和概率矩阵分解模型求出项目的隐语义矩阵。同时还构建了相关项目的评分矩阵,并利用该矩阵对项目得分加以预测,且将其作为冷启动项目的分数。通过协同过滤算法进行项目推荐,从而解决了算法的冷启动问题,并提高了综合性能。实验测试结果表明,文中所提算法较传统协同过滤算法的推荐准确率提高了约20%。 展开更多
关键词 协同过滤 深度学习 自编码器 概率矩阵分解 隐语义矩阵 冷启动
在线阅读 下载PDF
职业技能培训信息化系统的研究与设计
11
作者 邓玲芝 《信息与电脑》 2024年第9期244-247,共4页
文章首先阐述了系统的建设目标及其整体框架设计,框架包含数据层、服务层、应用层和业务层。随后对职业技能培训报名、在线培训课程学习、在线培训教学资源管理、线下培训管理等模块,以及企业测评联系模块和资金监管模块进行详细的论述... 文章首先阐述了系统的建设目标及其整体框架设计,框架包含数据层、服务层、应用层和业务层。随后对职业技能培训报名、在线培训课程学习、在线培训教学资源管理、线下培训管理等模块,以及企业测评联系模块和资金监管模块进行详细的论述。最后基于协同过滤算法的学员就业个性化推荐和深度学习的培训监管为例,详细介绍了系统的设计。 展开更多
关键词 技能培训 信息化 协同过滤 深度学习
在线阅读 下载PDF
基于深度学习的推荐系统研究综述 被引量:434
12
作者 黄立威 江碧涛 +2 位作者 吕守业 刘艳博 李德毅 《计算机学报》 EI CSCD 北大核心 2018年第7期1619-1647,共29页
深度学习是机器学习领域一个重要的研究方向,近年来在图像处理、自然语言理解、语音识别和在线广告等领域取得了突破性进展.将深度学习融入推荐系统中,研究如何整合海量的多源异构数据,构建更加贴合用户偏好需求的用户模型,以提高推荐... 深度学习是机器学习领域一个重要的研究方向,近年来在图像处理、自然语言理解、语音识别和在线广告等领域取得了突破性进展.将深度学习融入推荐系统中,研究如何整合海量的多源异构数据,构建更加贴合用户偏好需求的用户模型,以提高推荐系统的性能和用户满意度,成为基于深度学习的推荐系统的主要任务.该文对近几年基于深度学习的推荐系统研究进展进行综述,分析其与传统推荐系统的区别以及优势,并对其主要的研究方向、应用进展等进行概括、比较和分析.最后,对基于深度学习的推荐系统的未来发展趋势进行分析和展望. 展开更多
关键词 推荐系统 深度学习 协同过滤 个性化服务 数据挖掘 多源异构数据
在线阅读 下载PDF
一种基于用户播放行为序列的个性化视频推荐策略 被引量:35
13
作者 王娜 何晓明 +2 位作者 刘志强 王文君 李霞 《计算机学报》 EI CSCD 北大核心 2020年第1期123-135,共13页
本文针对在线视频服务网站的个性化推荐问题,提出了一种基于用户播放行为序列的个性化推荐策略.该策略通过深度神经网络词向量模型分析用户播放视频行为数据,将视频映射成等维度的特征向量,提取视频的语义特征.聚类用户播放历史视频的... 本文针对在线视频服务网站的个性化推荐问题,提出了一种基于用户播放行为序列的个性化推荐策略.该策略通过深度神经网络词向量模型分析用户播放视频行为数据,将视频映射成等维度的特征向量,提取视频的语义特征.聚类用户播放历史视频的特征向量,建模用户兴趣分布矩阵.结合用户兴趣偏好和用户观看历史序列生成推荐列表.在大规模的视频服务系统中进行了离线实验,相比随机算法、基于物品的协同过滤和基于用户的协同过滤传统推荐策略,本方法在用户观看视频的Top-N推荐精确率方面平均分别获得22.3%、30.7%和934%的相对提升,在召回率指标上分别获得52.8%、41%和1065%的相对提升.进一步地与矩阵分解算法SVD++、基于双向LSTM模型和注意力机制的Bi-LSTM+Attention算法和基于用户行为序列的深度兴趣网络DIN比较,Top-N推荐精确率和召回率也得到了明显提升.该推荐策略不仅获得了较高的精确率和召回率,还尝试解决传统推荐面临大规模工业数据集时的数据要求严苛、数据稀疏和数据噪声等问题. 展开更多
关键词 词向量 协同过滤 深度神经网络 个性化推荐
在线阅读 下载PDF
栈式降噪自编码器的标签协同过滤推荐算法 被引量:19
14
作者 霍欢 郑德原 +3 位作者 高丽萍 杨沪沪 刘亮 张薇 《小型微型计算机系统》 CSCD 北大核心 2018年第1期7-11,共5页
协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深... 协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深度学习模型能够深度挖掘内容隐藏信息的特性,将栈式降噪自编码器(SDAE)运用于基于内容的推荐模型中,并将其与基于标签的协同过滤算法结合在一起,提出DLCF(Deep Learning for Collaborative Filtering)算法.经过真实数据集的验证,DLCF算法能够很大程度上克服矩阵稀疏问题,在性能上优于传统推荐算法. 展开更多
关键词 推荐系统 协同过滤 深度学习 栈式降噪自编码器
在线阅读 下载PDF
基于深度学习的推荐算法研究综述 被引量:21
15
作者 王俊淑 张国明 胡斌 《南京师范大学学报(工程技术版)》 CAS 2018年第4期33-43,共11页
深度学习技术是机器学习领域的一个研究热点,已被深入研究并广泛应用于许多领域.推荐系统是缓解信息过载的重要技术,如何将深度学习融入推荐系统,利用深度学习的优势从各种复杂多维数据中学习用户和物品的内在本质特征,构建更加符合用... 深度学习技术是机器学习领域的一个研究热点,已被深入研究并广泛应用于许多领域.推荐系统是缓解信息过载的重要技术,如何将深度学习融入推荐系统,利用深度学习的优势从各种复杂多维数据中学习用户和物品的内在本质特征,构建更加符合用户兴趣需求的模型,以提高推荐算法的性能和用户满意度,是深度学习应用于推荐系统的主要研究任务.对基于深度学习的推荐算法研究和应用现状进行了综述,讨论并展望了深度学习应用于推荐系统的研究发展趋势. 展开更多
关键词 推荐系统 深度学习 协同过滤 内容推荐 动态推荐 标签推荐
在线阅读 下载PDF
融合知识图谱与协同过滤的推荐模型 被引量:13
16
作者 康雁 李涛 +3 位作者 李浩 钟声 张亚钏 卜荣景 《计算机工程》 CAS CSCD 北大核心 2020年第12期73-79,87,共8页
针对现有协同过滤推荐算法可解释性不高和基于内容推荐信息提取困难、推荐效率低等问题,提出一种融合知识图谱和协同过滤的混合推荐模型,其由知识图谱与深度学习结合模型RCKD和知识图谱与协同过滤结合模型RCKC构成。RCKD模型在获取知识... 针对现有协同过滤推荐算法可解释性不高和基于内容推荐信息提取困难、推荐效率低等问题,提出一种融合知识图谱和协同过滤的混合推荐模型,其由知识图谱与深度学习结合模型RCKD和知识图谱与协同过滤结合模型RCKC构成。RCKD模型在获取知识图谱的推理路径后,利用TransE算法将路径嵌入为向量,并使用LSTM和soft attention机制捕获路径推理的语义,通过池化操作区分不同路径推理的重要性,经全连接层和sigmoid函数获得预测评分。RCKC模型根据知识图谱表示学习的语义相似性,利用协同过滤算法获得预测评分。按预测评分的准确度将两个模型相互融合,最终获得可解释的混合推荐模型。在MovieLens数据集上的实验结果表明,与RKGE、RippleN模型和经典协同过滤算法相比,该模型具有较好的推荐可解释性和较高的推荐准确率。 展开更多
关键词 知识图谱 协同过滤 深度学习 混合推荐 知识表示学习
在线阅读 下载PDF
基于深度学习的欧几里得嵌入的推荐算法 被引量:7
17
作者 余永红 殷凯宇 +2 位作者 王强 张文彪 赵卫滨 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第5期729-735,共7页
推荐系统为用户推荐用户可能感兴趣的物品,可以有效地减轻信息过载。基于欧几里得嵌入的协同过滤方法将用户和物品映射到统一的隐藏空间中,是构建推荐系统的重要方法之一。然而,传统的基于欧几里得嵌入的推荐方法仅考虑用户和物品隐藏... 推荐系统为用户推荐用户可能感兴趣的物品,可以有效地减轻信息过载。基于欧几里得嵌入的协同过滤方法将用户和物品映射到统一的隐藏空间中,是构建推荐系统的重要方法之一。然而,传统的基于欧几里得嵌入的推荐方法仅考虑用户和物品隐藏特征向量之间低阶交互,不能有效建模现实世界中用户和物品的复杂交互行为。本文提出基于深度学习的欧几里得嵌入的协同过滤算法,利用深度学习技术学习用户和物品隐藏特征向量之间的高阶、非线性交互函数,建模用户和物品之间复杂交互行为。在真实数据集上的实验结果表明,基于深度学习的欧几里得嵌入的协同过滤算法性能优于传统协同过滤算法。 展开更多
关键词 推荐算法 协同过滤 欧几里得嵌入 深度学习
在线阅读 下载PDF
一种基于自注意力机制的组推荐方法 被引量:10
18
作者 刘浩翰 任洪润 贺怀清 《计算机应用研究》 CSCD 北大核心 2020年第12期3572-3577,共6页
基于自注意力网络和神经协同过滤模型(neural collaborative filtering,NCF)提出一种基于自注意力机制的组推荐系统模型SAGR(self-attention group recommendation),用于建模用户交互数据以及学习群组潜在偏好的表示。通过在用户级和项... 基于自注意力网络和神经协同过滤模型(neural collaborative filtering,NCF)提出一种基于自注意力机制的组推荐系统模型SAGR(self-attention group recommendation),用于建模用户交互数据以及学习群组潜在偏好的表示。通过在用户级和项目级分别使用自注意力机制,动态调整组中每个用户的权重,解决偏好融合问题从而得到组表示。再通过多层神经网络框架NCF从数据中挖掘组和项目之间的交互,最终完成群组推荐。在CAMRa2011和MovieLens数据集上与同类方法进行对比,实验结果表明SAGR方法能够取得更好的组推荐结果。 展开更多
关键词 群组推荐 自注意力机制 协同过滤 深度学习 融合策略
在线阅读 下载PDF
基于栈式降噪自编码器的协同过滤算法 被引量:10
19
作者 周洋 陈家琪 《计算机应用研究》 CSCD 北大核心 2017年第8期2336-2339,共4页
针对协同过滤推荐准确性的现状进行了研究,提出一种基于栈式降噪自编码器的协同过滤算法。栈式降噪自编码器是一种典型的深度学习网络模型,具有强大的特征提取能力。用户对项目的评分作为输入,训练网络,学习出项目的隐含特征编码,用PCA... 针对协同过滤推荐准确性的现状进行了研究,提出一种基于栈式降噪自编码器的协同过滤算法。栈式降噪自编码器是一种典型的深度学习网络模型,具有强大的特征提取能力。用户对项目的评分作为输入,训练网络,学习出项目的隐含特征编码,用PCA对项目属性降维并计算属性相似性,结合隐性编码计算的相似性作为最终结果,根据最终的项目相似性产生top-N推荐列表。Movie Lens数据集的实验表明,该算法能够有效提升推荐结果的召回率,一定程度上解决了评分矩阵稀疏与项目之间没有共同用户评分就不能计算相似性的问题。 展开更多
关键词 推荐系统 协同过滤 深度学习 栈式降噪自编码器
在线阅读 下载PDF
活动社交网络中活动推荐方法总结与展望 被引量:2
20
作者 赵海燕 孙俊松 +1 位作者 陈庆奎 曹健 《小型微型计算机系统》 CSCD 北大核心 2021年第8期1574-1583,共10页
活动社交网络是一种新型的社交网络,用户通过线上社交的方式,组织并参与线上、线下活动.如何快速准确地向用户进行活动推荐,解决其中严重的冷启动问题是如今主要的研究方向.因此需要考虑线上和线下异构的社交关系的影响,本文分析了活动... 活动社交网络是一种新型的社交网络,用户通过线上社交的方式,组织并参与线上、线下活动.如何快速准确地向用户进行活动推荐,解决其中严重的冷启动问题是如今主要的研究方向.因此需要考虑线上和线下异构的社交关系的影响,本文分析了活动与物品之间的异同性,阐明活动推荐时间短反馈少等特性.同时通过推荐方法角度对现有的研究做了归纳与分类,其中主要包括基于协同过滤、基于图、基于上下文感知等方法.最后,总结了深度学习在活动推荐中的引用以及优势.本文对这些算法特点进行总结,并提出了对未来研究方向的展望. 展开更多
关键词 活动社交网络 活动推荐 协同过滤 深度学习
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部