期刊文献+
共找到244篇文章
< 1 2 13 >
每页显示 20 50 100
Optimisation of sparse deep autoencoders for dynamic network embedding
1
作者 Huimei Tang Yutao Zhang +4 位作者 Lijia Ma Qiuzhen Lin Liping Huang Jianqiang Li Maoguo Gong 《CAAI Transactions on Intelligence Technology》 2024年第6期1361-1376,共16页
Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature space.However,the existing deep learningbased NE methods are time-consuming as they need to tra... Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature space.However,the existing deep learningbased NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters.A sparse deep autoencoder(called SPDNE)for dynamic NE is proposed,aiming to learn the network structures while preserving the node evolution with a low computational complexity.SPDNE tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic NE.Then,an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is proposed.The performance of SPDNE over three dynamical NE models(i.e.sparse architecture-based deep autoencoder method,DynGEM,and ElvDNE)is evaluated on three well-known benchmark networks and five real-world networks.The experimental results demonstrate that SPDNE can reduce about 70%of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE models.The results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms. 展开更多
关键词 deep autoencoder dynamic networks low-dimensional feature space network embedding sparse structure
在线阅读 下载PDF
Directional Routing Algorithm for Deep Space Optical Network
2
作者 Lei Guo Xiaorui Wang +3 位作者 Yejun Liu Pengchao Han Yamin Xie Yuchen Tan 《China Communications》 SCIE CSCD 2017年第1期158-168,共11页
With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an i... With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an important foundation and inevitable development trend of future deepspace communication. In this paper, we design a deep space node model which is capable of combining the space division multiplexing with frequency division multiplexing. Furthermore, we propose the directional flooding routing algorithm(DFRA) for DSON based on our node model. This scheme selectively forwards the data packets in the routing, so that the energy consumption can be reduced effectively because only a portion of nodes will participate the flooding routing. Simulation results show that, compared with traditional flooding routing algorithm(TFRA), the DFRA can avoid the non-directional and blind transmission. Therefore, the energy consumption in message routing will be reduced and the lifespan of DSON can also be prolonged effectively. Although the complexity of routing implementation is slightly increased compared with TFRA, the energy of nodes can be saved and the transmission rate is obviously improved in DFRA. Thus the overall performance of DSON can be significantly improved. 展开更多
关键词 deep space optical network routing algorithm directional flooding routing algorithm traditional flooding routing algorithm
在线阅读 下载PDF
A SURVEY OF DEEP SPACE COMMUNICATIONS 被引量:3
3
作者 Zhang Gengxin Xie Zhidong Bian Dongming Sun Qian 《Journal of Electronics(China)》 2011年第2期145-153,共9页
Deep space communications has played an important role in deep space exploration. Compared with common satellite and terrestrial communications, deep space communications faces more challenging environment. The paper ... Deep space communications has played an important role in deep space exploration. Compared with common satellite and terrestrial communications, deep space communications faces more challenging environment. The paper investigated the unique features of deep space communica-tions in detail, discussed the key technologies and its development trends for deep space communica-tions. 展开更多
关键词 deep space communication MODULATION Channel coding PROTOCOL networkING
在线阅读 下载PDF
Enhancing Collaborative and Geometric Multi-Kernel Learning Using Deep Neural Network 被引量:1
4
作者 Bareera Zafar Syed Abbas Zilqurnain Naqvi +3 位作者 Muhammad Ahsan Allah Ditta Ummul Baneen Muhammad Adnan Khan 《Computers, Materials & Continua》 SCIE EI 2022年第9期5099-5116,共18页
This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata d... This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata distributions. CGMKL combines multiple kernel learning with softmaxfunction using the framework of multi empirical kernel learning (MEKL) inwhich empirical kernel mapping (EKM) provides explicit feature constructionin the high dimensional kernel space. CGMKL ensures the consistent outputof samples across kernel spaces and minimizes the within-class distance tohighlight geometric features of multiple classes. However, the kernels constructed by CGMKL do not have any explicit relationship among them andtry to construct high dimensional feature representations independently fromeach other. This could be disadvantageous for learning on datasets with complex hidden structures. To overcome this limitation, E-CGMKL constructskernel spaces from hidden layers of trained deep neural networks (DNN).Due to the nature of the DNN architecture, these kernel spaces not onlyprovide multiple feature representations but also inherit the compositionalhierarchy of the hidden layers, which might be beneficial for enhancing thepredictive performance of the CGMKL algorithm on complex data withnatural hierarchical structures, for example, image data. Furthermore, ourproposed scheme handles image data by constructing kernel spaces from aconvolutional neural network (CNN). Considering the effectiveness of CNNarchitecture on image data, these kernel spaces provide a major advantageover the CGMKL algorithm which does not exploit the CNN architecture forconstructing kernel spaces from image data. Additionally, outputs of hiddenlayers directly provide features for kernel spaces and unlike CGMKL, do notrequire an approximate MEKL framework. E-CGMKL combines the consistency and geometry preserving aspects of CGMKL with the compositionalhierarchy of kernel spaces extracted from DNN hidden layers to enhance the predictive performance of CGMKL significantly. The experimental results onvarious data sets demonstrate the superior performance of the E-CGMKLalgorithm compared to other competing methods including the benchmarkCGMKL. 展开更多
关键词 CGMKL multi-class classification deep neural network multiplekernel learning hierarchical kernel spaces
在线阅读 下载PDF
基于多空间概率增强的图像对抗样本生成方法
5
作者 王华华 范子健 刘泽 《计算机应用》 北大核心 2025年第3期883-890,共8页
对抗样本能够有效评估深度神经网络的鲁棒性和安全性。针对黑盒场景下对抗攻击成功率低的问题,为提高对抗样本的可迁移性,提出一种基于多空间概率增强的对抗样本生成方法(MPEAM)。所提方法通过在对抗样本生成方法中引入2条随机数据增强... 对抗样本能够有效评估深度神经网络的鲁棒性和安全性。针对黑盒场景下对抗攻击成功率低的问题,为提高对抗样本的可迁移性,提出一种基于多空间概率增强的对抗样本生成方法(MPEAM)。所提方法通过在对抗样本生成方法中引入2条随机数据增强支路,而各支路分别基于像素空间和HSV颜色空间实现图像的随机裁剪填充(CP)和随机颜色变换(CC),并通过构建概率模型控制返回的图像样本,从而在增加原始样本多样性的同时降低对抗样本对原数据集的依赖,进而提高对抗样本的可迁移性。在此基础上,将所提方法引入集成模型中,以进一步提升黑盒场景下对抗样本攻击的成功率。在ImageNet数据集上的大量实验结果表明,相较于基准方法——迭代快速梯度符号方法(IFGSM)和动量迭代快速梯度符号方法(MIFGSM),所提方法的黑盒攻击成功率分别平均提升了28.72和8.44个百分点;相较于基于单空间概率增强的对抗攻击方法,所提方法的黑盒攻击成功率最高提升了6.81个百分点。以上验证了所提方法能够以较小的复杂度代价提高对抗样本的可迁移性,并实现黑盒场景下的有效攻击。 展开更多
关键词 对抗样本 深度神经网络 黑盒场景 可迁移性 多空间概率增强
在线阅读 下载PDF
基于船位数据采集的舰船作业状态特征提取方法
6
作者 颜悦 游学军 吕太之 《舰船科学技术》 北大核心 2025年第6期145-148,共4页
复杂的海洋环境给精准提取舰船作业状态特征造成了困难,也影响了对舰船作业状态的判断效果。为解决这一问题,本文提出基于船位数据采集的舰船作业状态特征提取方法。首先,利用北斗导航卫星系统,采集舰船的经纬度、航速、航行方位角等船... 复杂的海洋环境给精准提取舰船作业状态特征造成了困难,也影响了对舰船作业状态的判断效果。为解决这一问题,本文提出基于船位数据采集的舰船作业状态特征提取方法。首先,利用北斗导航卫星系统,采集舰船的经纬度、航速、航行方位角等船位数据;然后,从舰船的累计作业时长、位置、空间距离、平均作业速率4个方面,分析舰船的作业状态特征。根据船位点在不同速率区间出现的频数,确定舰船的平均速率阈值;最后,根构建包含输入层、隐含层、输出层在内的深度神经网络,利用船位数据训练深度神经网络,输出舰船作业状态特征的提取结果。实验结果表明,该方法能够有效提取舰船的作业状态特征,帮助舰船作业人员在复杂多变的海洋环境中做出更加明智和及时的决策。 展开更多
关键词 船位数据采集 舰船作业状态 特征提取 舰船位置 深度神经网络 空间距离
在线阅读 下载PDF
空天地边缘计算网络任务卸载策略
7
作者 余翔 曲原宇 杨路 《电讯技术》 北大核心 2025年第4期503-510,共8页
针对空天地网络中计算资源受限的边缘服务器在处理大量任务时,面临过载导致任务完成时间和用户能耗增加的问题,提出了一种基于深度强化学习的三层协同任务卸载和资源分配方案,以任务完成时间和用户能耗建立任务开销函数,在计算资源的约... 针对空天地网络中计算资源受限的边缘服务器在处理大量任务时,面临过载导致任务完成时间和用户能耗增加的问题,提出了一种基于深度强化学习的三层协同任务卸载和资源分配方案,以任务完成时间和用户能耗建立任务开销函数,在计算资源的约束下联合优化用户卸载决策、用户传输功率、子载波分配和计算资源分配。首先采用拉格朗日乘子法优化计算资源分配,然后使用深度强化学习求解卸载决策、用户发射功率和子载波分配,最后通过交替迭代的方法得到优化解。仿真结果表明,与DQN(Deep Q-learning Network)、DDQN(Double DQN)、DDPG(Deep Deterministic Policy Gradient)等方案相比,所提方案任务开销分别下降约19%、10%和13%。 展开更多
关键词 空天地一体化网络 移动边缘计算 计算卸载 资源分配 深度强化学习
在线阅读 下载PDF
基于改进深度强化学习的交通信号灯控制
8
作者 韦敏 蔡常健 《计算机工程与设计》 北大核心 2025年第3期927-933,共7页
为解决复杂交通情境下传统交通信号灯控制效果有限的问题,提出一种改进的深度强化学习交通信号灯控制方法。将对决网络和双Q学习结合,改进深度强化学习模型结构,缓解算法的高估;设计能提取更丰富交通信息的多特征状态空间,考虑车辆等待... 为解决复杂交通情境下传统交通信号灯控制效果有限的问题,提出一种改进的深度强化学习交通信号灯控制方法。将对决网络和双Q学习结合,改进深度强化学习模型结构,缓解算法的高估;设计能提取更丰富交通信息的多特征状态空间,考虑车辆等待时间和车道最大队列长度的多任务奖励函数,提高城市交叉口的通行效率。实验结果表明,所提方法能够获得更高奖励,在训练场景对比基线方法平均等待时间和平均队列长度均明显降低,平均速度明显提高,测试结果同样验证所提方法更能提高道路通行效率。 展开更多
关键词 深度强化学习 信号灯控制 对决网络 状态空间 奖励函数 城市交叉口 交通工程
在线阅读 下载PDF
基于节点重要度的深层地下空间亚安全区选址研究
9
作者 蒋辰瑜 李超 +1 位作者 杨瑞航 周铁军 《灾害学》 北大核心 2025年第1期174-179,共6页
为防范化解深层地下疏散面临的安全风险,引入亚安全区的概念,在深地设置具有安全保障和疏散缓冲功能的临时避难场所。将深层地下空间模型抽象为拓扑网络,对各网络节点的节点重要度进行计算,进而基于深地疏散特征和节点重要度排序结果,... 为防范化解深层地下疏散面临的安全风险,引入亚安全区的概念,在深地设置具有安全保障和疏散缓冲功能的临时避难场所。将深层地下空间模型抽象为拓扑网络,对各网络节点的节点重要度进行计算,进而基于深地疏散特征和节点重要度排序结果,确立亚安全区选址及分级依据。结果表明,与地面直接相接的一级垂直疏散体底部是重要的疏散节点,应选定为一级亚安全区;节点重要度排序前7.0%的节点多为水平疏散通道相互交接处的楼梯间前室,选定为二级亚安全区;节点重要度排序7.0%~18.4%的节点多为硐室内部楼梯间前室,选定为三级亚安全区。该文提出的深地亚安全区选址能有效保障深层地下空间人员的疏散安全,为建立地下空间安全疏散体系提供理论依据和技术支撑。 展开更多
关键词 深层地下空间 亚安全区 节点重要度 拓扑网络 选址
在线阅读 下载PDF
基于Bi-LSTM的空间站在轨事件规划
10
作者 宫贺 张嘉城 +5 位作者 王功波 刘丹 马邝 郭帅 罗亚中 梁彦刚 《宇航学报》 北大核心 2025年第1期193-203,共11页
空间站在轨事件规划是支持空间站长期在轨运营并最大化效益的关键技术,其本质上是一种考虑时间和在轨多类资源约束的组合调度问题。已有研究中的代表性方法包括基于规则的启发式算法和基于群体智能的优化算法。前者效率较高,但收敛性不... 空间站在轨事件规划是支持空间站长期在轨运营并最大化效益的关键技术,其本质上是一种考虑时间和在轨多类资源约束的组合调度问题。已有研究中的代表性方法包括基于规则的启发式算法和基于群体智能的优化算法。前者效率较高,但收敛性不足;后者可获得近全局最优解,但计算成本较高。因此,提出一种基于学习的智能规划方法,构建基于Bi-LSTM的空间站在轨事件规划神经网络模型,通过网络预训练提取空间站在轨事件规划问题特征,捕捉规划对象到规划结果的映射。提出了基于A3C框架的无监督网络训练方法,在训练中嵌入了一种启发式约束化解策略指导网络收敛。经过训练的神经网络规划模型可在线快速生成事件执行方案,自主有效化解多类型约束,规划成功率超过99%。 展开更多
关键词 空间站 任务规划 深度强化学习 神经网络 组合调度
在线阅读 下载PDF
基于深度神经网络的皖南地区滑坡易发性评估
11
作者 马伟英 厉香蕴 杨晓红 《经纬天地》 2025年第2期69-73,共5页
为定量评估地形复杂的皖南地区滑坡地质灾害易发性,以实地调查的256个滑坡点为因变量,以表征区域地表覆盖、地形、地质、土壤属性的16个环境变量为自变量,构建基于深度神经网络(deep neural network,DNN)的非线性模型,对皖南滑坡易发性... 为定量评估地形复杂的皖南地区滑坡地质灾害易发性,以实地调查的256个滑坡点为因变量,以表征区域地表覆盖、地形、地质、土壤属性的16个环境变量为自变量,构建基于深度神经网络(deep neural network,DNN)的非线性模型,对皖南滑坡易发性进行空间预测。结果表明:入选的16项滑坡因子之间不存在共线性特征,其中,土壤调整植被指数(soil adjusted vegetation index,SAVI)是影响滑坡的首要因子;DNN模型较好识别滑坡易发性空间分布差异,高易发性集中于缓斜坡面和断面处,其中较低、低、中、较高和高的滑坡易发性各占区域面积的32.6%、18.4%、22.3%、15.6%、11.1%;DNN模型验证总体精度达0.86,其总体评价结果可靠。开发基于多源数据的DNN模型,为滑坡地质灾害防治提供了科学依据和技术支持。 展开更多
关键词 滑坡易发性 空间预测 深度神经网络 多源数据
在线阅读 下载PDF
基于图神经网络的天地一体化网络建模及性能预测
12
作者 潘成胜 沈凌宇 +1 位作者 赵晨 崔骁松 《火力与指挥控制》 北大核心 2025年第2期13-20,共8页
随着新型作战装备的不断涌现,我军指挥控制网络呈天地一体化趋向,作战元素增多对指挥控制网络业务低时延、低抖动的传输能力提出了更高要求。为解决异构一体化指挥控制网络难以对流量的复杂特性形成准确约束以及网络建模困难的问题,提... 随着新型作战装备的不断涌现,我军指挥控制网络呈天地一体化趋向,作战元素增多对指挥控制网络业务低时延、低抖动的传输能力提出了更高要求。为解决异构一体化指挥控制网络难以对流量的复杂特性形成准确约束以及网络建模困难的问题,提出一种基于图神经网络和注意力机制融合的网络性能预测模型,以实现对天地一体化指挥控制网络中信息传输时延和抖动性能的精准预测。实验表明,针对指挥控制信息传输性能,该模型具有良好的预测效果。 展开更多
关键词 网络性能预测 天地一体化 图神经网络 深度学习
在线阅读 下载PDF
广义确定性标识网络 被引量:1
13
作者 杨冬 程宗荣 +4 位作者 田伟康 王洪超 张宏科 谭斌 赵志勇 《电子学报》 EI CAS CSCD 北大核心 2024年第1期1-18,共18页
随着智能制造、智能交通等重大国家战略实施,确定性成为信息网络尤其是行业专网的新焦点.现有确定性网络技术始终关注网络传输要素(带宽、时隙等)来保障数据流的确定性传输.然而,仅靠保障传输要素无法支撑新兴行业应用的多样化需求.例如... 随着智能制造、智能交通等重大国家战略实施,确定性成为信息网络尤其是行业专网的新焦点.现有确定性网络技术始终关注网络传输要素(带宽、时隙等)来保障数据流的确定性传输.然而,仅靠保障传输要素无法支撑新兴行业应用的多样化需求.例如,在算网融合场景,智算任务要求同时保障传输与计算要素的确定性来实现高性能通信;在绿色通信场景,需要考虑节点能量要素的确定性以维持网络稳定运行.针对上述需求,本文基于前期提出的标识网络技术,研究面向传输、计算、存储、能量等多要素的广义确定性网络.首先提出广义确定性标识网络架构,包括差异化服务层、异构融合网络层和智慧化适配层.差异化服务层和异构融合网络层,分别实现差异化确定性应用需求和异构化确定性网络要素的统一标识和描述,并通过标识解析映射实现确定性信息向智慧化适配层的统一封装和传递;智慧化适配层完成差异化确定性应用需求和异构化确定性网络要素的适配.现有确定性资源适配方法,即使仅考虑单一网络内的基本确定性要素,仍面临计算时间长、求解复杂性高、灵活度低等问题,为了支持更加复杂的多确定性要素、多种异构网络的协同适配,设计了基于深度强化学习的端到端的确定性调度(End-to-end Deterministic resource scheduling,E2eDet)算法,该算法可统一化、端到端地为混合数据流协同分配多种确定性网络资源,满足不同应用的差异化确定性需求.实验表明,E2eDet比DeepCQF和Random算法分别提升了28.4%和6.38倍数据流调度数量,同时E2eDet可以较好地权衡计算时间和调度能力. 展开更多
关键词 广义确定性网络 完备标识空间 网络体系架构 深度强化学习 网络资源调度
在线阅读 下载PDF
Star point positioning for large dynamic star sensors in near space based on capsule network
14
作者 Zhen LIAO Hongyuan WANG +3 位作者 Xunjiang ZHENG Yunzhao ZANG Yinxi LU Shuai YAO 《Chinese Journal of Aeronautics》 2025年第2期418-431,共14页
In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a s... In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a star point positioning algorithm based on the capsule network whose input and output are both vectors. First, a PCTL (Probability-Coordinate Transformation Layer) is designed to represent the mapping relationship between the probability output of the capsule network and the star point sub-pixel coordinates. Then, Coordconv Layer is introduced to implement explicit encoding of space information and the probability is used as the centroid weight to achieve the conversion between probability and star point sub-pixel coordinates, which improves the network’s ability to perceive star point positions. Finally, based on the dynamic imaging principle of star sensors and the characteristics of near-space environment, a star map dataset for algorithm training and testing is constructed. The simulation results show that the proposed algorithm reduces the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) of the star point positioning by 36.1% and 41.7% respectively compared with the traditional algorithm. The research results can provide important theory and technical support for the scheme design, index demonstration, test and evaluation of large dynamic star sensors in near space. 展开更多
关键词 Star point positioning Star trackers Capsule network deep learning Dynamic imaging Near space application
原文传递
基于深度强化学习的空天地一体化网络资源分配算法 被引量:1
15
作者 刘雪芳 毛伟灏 杨清海 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2831-2841,共11页
空天地一体化网络(SAGIN)通过提高地面网络的资源利用率可以有效满足多种业务类型的通信需求,然而忽略了系统的自适应能力和鲁棒性及不同用户的服务质量(QoS)。针对这一问题,该文提出在空天地一体化网络架构下,面向城区和郊区通信的深... 空天地一体化网络(SAGIN)通过提高地面网络的资源利用率可以有效满足多种业务类型的通信需求,然而忽略了系统的自适应能力和鲁棒性及不同用户的服务质量(QoS)。针对这一问题,该文提出在空天地一体化网络架构下,面向城区和郊区通信的深度强化学习(DRL)资源分配算法。基于第3代合作伙伴计划(3GPP)标准中定义的用户参考信号接收功率(RSRP),考虑地面同频干扰情况,以不同域中基站的时频资源作为约束条件,构建了最大化系统用户的下行吞吐量优化问题。利用深度Q网络(DQN)算法求解该优化问题时,定义了能够综合考虑用户服务质量需求、系统自适应能力及系统鲁棒性的奖励函数。仿真结果表明,综合考虑无人驾驶汽车,沉浸式服务及普通移动终端通信业务需求时,表征系统性能的奖励函数值在2 000次迭代下,相较于贪婪算法提升了39.1%;对于无人驾驶汽车业务,利用DQN算法进行资源分配后,相比于贪婪算法,丢包数平均下降38.07%,时延下降了6.05%。 展开更多
关键词 空天地一体化网络 资源分配算法 深度强化学习 深度Q网络
在线阅读 下载PDF
神经架构搜索综述 被引量:1
16
作者 孙仁科 皇甫志宇 +2 位作者 陈虎 李仲年 许新征 《计算机应用》 CSCD 北大核心 2024年第10期2983-2994,共12页
近几年,深度学习因具有强大的表征能力,已经在许多领域中取得了突破性的进展,而神经网络的架构对它的性能至关重要。然而,高性能的神经网络架构设计严重依赖研究人员的先验知识和经验,神经网络参数量庞大,难以设计最优的神经网络架构,... 近几年,深度学习因具有强大的表征能力,已经在许多领域中取得了突破性的进展,而神经网络的架构对它的性能至关重要。然而,高性能的神经网络架构设计严重依赖研究人员的先验知识和经验,神经网络参数量庞大,难以设计最优的神经网络架构,因此自动神经架构搜索(NAS)获得了极大的关注。NAS是一种使用机器学习的方法,可以在不需要大量人力的情况下,自动搜索最优网络架构的技术,是未来神经网络设计的重要手段之一。NAS本质上是一个搜索优化问题,通过对搜索空间、搜索策略和性能评估策略的设计,自动搜索最优的网络结构。从搜索空间、搜索策略和性能评估策略这3个方面详细且全面地分析、比较和总结目前NAS的研究进展,方便读者快速了解神经架构搜索的发展过程和各项技术的优缺点,并提出NAS未来可能的研究发展方向。 展开更多
关键词 神经架构搜索 深度学习 机器学习 神经网络 搜索空间 搜索策略 性能评估策略
在线阅读 下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:2
17
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 K-MEANS聚类 特征空间增强 mixup算法
在线阅读 下载PDF
深空探测自主运行的一种可信性技术体系
18
作者 党炜 骆军委 +8 位作者 郑作环 敖亮 李博 李鹏 熊盛阳 许鹏程 宋恒旭 胡剑桥 冯业为 《空间科学学报》 CAS CSCD 北大核心 2024年第2期228-240,共13页
未认知与不确定性是深空探测任务的基本特征.本文基于战略导向的体系化基础研究,建立了一种面向科学价值最大化的探测场景和以可靠性为核心技术基础的深空探测自主运行可信性技术体系.分析研究了深空探测场景下的可靠性概念;面向精确感... 未认知与不确定性是深空探测任务的基本特征.本文基于战略导向的体系化基础研究,建立了一种面向科学价值最大化的探测场景和以可靠性为核心技术基础的深空探测自主运行可信性技术体系.分析研究了深空探测场景下的可靠性概念;面向精确感知、最优计算、准确决策、快精准执行的目标要素,提出了深空探测自主运行的可信性体系框架以及“需求-认知-工程”总体技术架构;针对自主运行可信性的关键技术难点,开展了可靠性导向的多物理场、强耦合白盒建模,复杂网络故障传播机制分析,COTS元器件深空探测应用的高可靠保证,以及“模型+数据+知识”一体的融合机制分析等研究.对该技术体系的关键技术验证策略及其最小系统在卫星星座中的应用进行了验证,结果表明,所提出的技术体系具有较高的工程价值. 展开更多
关键词 深空探测 自主运行 可靠性 可信性 多物理场 复杂网络
在线阅读 下载PDF
基于应用场景的城市深部地下空间规划模式研究
19
作者 安晓晓 李云燕 《地下空间与工程学报》 CSCD 北大核心 2024年第3期701-709,共9页
地下空间开发利用是解决当前我国土地资源紧张、人口稠密、交通堵塞等诸多城市问题的一种重要途径,但当前浅层地下空间开发利用方式难以直接指导我国复杂的深地开发场景,探寻深地空间开发组织模式是我国新时期城市化发展的必然需求。通... 地下空间开发利用是解决当前我国土地资源紧张、人口稠密、交通堵塞等诸多城市问题的一种重要途径,但当前浅层地下空间开发利用方式难以直接指导我国复杂的深地开发场景,探寻深地空间开发组织模式是我国新时期城市化发展的必然需求。通过梳理国内外深部地下空间应用场景,通过分析深地矿井、深地交通、深地储存、深地实验室等各类场景下相应空间特征以及使用需求等,总结提出了点状、线状、面状和立体网络式4种典型的深部地下空间网络组织模式,并分析4种典型发展模式的适用特征与可能的应用场景,以期为我国深地空间开发建设和场景设计提供参考借鉴。 展开更多
关键词 深层地下空间 网络化 案例分析 开发模式
在线阅读 下载PDF
基于模型驱动深度学习的OTFS检测方法 被引量:2
20
作者 魏新龙 李立 +2 位作者 温驰 靳一 徐常志 《电讯技术》 北大核心 2024年第8期1181-1186,共6页
正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术凭借对多普勒频移的优良抗性,保证了高动态场景下的可靠性通信。与大多数OTFS信号检测方案相比,基于深度学习(Deep Learning, DL)的OTFS检测器不需要耗费高额的导频能量,以... 正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术凭借对多普勒频移的优良抗性,保证了高动态场景下的可靠性通信。与大多数OTFS信号检测方案相比,基于深度学习(Deep Learning, DL)的OTFS检测器不需要耗费高额的导频能量,以此获得精确的信道状态信息。基于多维输入的卷积神经网络(Convolutional Neural Networks, CNN)和一维输入的深度神经网络(Deep Neural Networks, DNN),搭建了OTFS信号检测模型,并结合OTFS的输入输出关系,以模型驱动,提出一种部分输入方法。与数据驱动DL相比,该方法沿时延轴截断输入数据,仅向网络输入与待检测信号相关性强的部分接收信号。该方法不仅减小了数据驱动CNN和DNN的训练参数量,降低了训练复杂度,而且检测性能也不弱于传统的线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)算法。 展开更多
关键词 正交时频空(OTFS) 信号检测 深度学习 卷积神经网络 深度神经网络
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部