The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph...The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.展开更多
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario...To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.展开更多
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage...Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.展开更多
Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant...Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.展开更多
Driven by the urgent demands for information technology,energy,and intelligent industry,third-generation semiconductor GaN has emerged as a pivotal component in electronic and optoelectronic devices.Fundamentally,piez...Driven by the urgent demands for information technology,energy,and intelligent industry,third-generation semiconductor GaN has emerged as a pivotal component in electronic and optoelectronic devices.Fundamentally,piezoelectric polarization is the most essential feature of GaN materials.Incorporating piezotronics and piezo-phototronics,GaN materials synergize mechanical signals with electrical and optical signals,thereby achieving multi-field coupling that enhances device performance.Piezotronics regulates the carrier transport process in micro-nano devices,which has been proven to significantly improve the performance of devices(such as high electron mobility transistors and microLEDs)and brings many novel applications.This review examines GaN material properties and the theoretical foundations of piezotronics and phototronics.Furthermore,it delves into the fabrication and integration processes of GaN devices to achieve state-of-the-art performance.Additionally,this review analyzes the impact of introducing three-dimensional stress and regulatory forces on the electrical and optical output performance of devices.Moreover,it discusses the burgeoning applications of GaN devices in neural sensing,optoelectronic output,and energy harvesting.The potential of piezotroniccontrolled GaN devices provides valuable insights for future research and the development of multi-functional,diversified electronic devices.展开更多
As a multipurpose research reactor,fission molybdenum-technetium irradiation production is one of the wide applications of China Advanced Research Reactor CARR.The goal of this study is to achieve“online loading and ...As a multipurpose research reactor,fission molybdenum-technetium irradiation production is one of the wide applications of China Advanced Research Reactor CARR.The goal of this study is to achieve“online loading and unloading”of the target during fission molybdenum-99(99Mo)to technetium-99m(99mTc)irradiation production without affecting the normal reactor operation and other irradiation channels,which will make CARR more efficient in performing irradiation tasks.This paper introduces the design principles,requirements and concept structural design of the irradiation device of fission 99Mo-99mTc.展开更多
Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing signi...Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing significant potential for various applications.This paper focuses on the regulation and application of ZnO-based p-n junctions and piezoelectric devices.It discusses in detail the preparation of ZnO materials,the construction of p-n junctions,the optimization of piezoelectric device performance,and its application in various fields.By employing different preparation methods and strategies,high-quality ZnO thin films can be grown,and effective control of p-type conductivity achieved.This study provides both a theoretical foundation and technical support for controlling the performance of ZnO-based piezoelectric devices,as well as paving new pathways for the broader application of ZnO materials.展开更多
Recurrent neural networks(RNNs)have proven to be indispensable for processing sequential and temporal data,with extensive applications in language modeling,text generation,machine translation,and time-series forecasti...Recurrent neural networks(RNNs)have proven to be indispensable for processing sequential and temporal data,with extensive applications in language modeling,text generation,machine translation,and time-series forecasting.Despite their versatility,RNNs are frequently beset by significant training expenses and slow convergence times,which impinge upon their deployment in edge AI applications.Reservoir computing(RC),a specialized RNN variant,is attracting increased attention as a cost-effective alternative for processing temporal and sequential data at the edge.RC’s distinctive advantage stems from its compatibility with emerging memristive hardware,which leverages the energy efficiency and reduced footprint of analog in-memory and in-sensor computing,offering a streamlined and energy-efficient solution.This review offers a comprehensive explanation of RC’s underlying principles,fabrication processes,and surveys recent progress in nano-memristive device based RC systems from the viewpoints of in-memory and in-sensor RC function.It covers a spectrum of memristive device,from established oxide-based memristive device to cutting-edge material science developments,providing readers with a lucid understanding of RC’s hardware implementation and fostering innovative designs for in-sensor RC systems.Lastly,we identify prevailing challenges and suggest viable solutions,paving the way for future advancements in in-sensor RC technology.展开更多
Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and the...Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency.展开更多
Objective: To identify the principal factors associated with the occurrence and development of medical device-related pressure injuries (MDRPI) in adults admitted to hospitals. MDRPI, a peculiar subtype of pressure in...Objective: To identify the principal factors associated with the occurrence and development of medical device-related pressure injuries (MDRPI) in adults admitted to hospitals. MDRPI, a peculiar subtype of pressure injuries (PI), result from the pression exerted by devices (or their fixation systems) applied for diagnostic and therapeutic purposes. MDRPI represent a serious problem for patients and healthcare systems. Understanding potential risk factors is an important step in implementing effective interventions. Methods: In this study, we will perform a systematic review;if possible, also a meta-analysis will be performed. The review will follow the preferred reporting items for systematic reviews and meta-analyses (PRISMA) reporting guidelines for systematic reviews. A rigorous literature search will be conducted both in electronic databases (Medline/PubMed, Embase, CINAHL, Web of Science, Scopus, Cochrane Library) to identify studies published since 2000 and in gray literature for unpublished studies. Pairs of researchers will identify relevant evidence, extract data, and assess risk of bias independently in each eligible study. Factors associated with the occurrence of MDRPI are considered the primary outcome. Secondary outcomes are prevalence and incidence of MDRPI, length of hospital stay, infections, and death. The evidence will be synthesized using the GRADE methodology. Results: Results are not currently available as this is a protocol for a systematic review. Conclusions: This systematic review will identify evidence on risk factors for developing MDRPI. We are confident that the results of this review will help to improve clinical practice and guide future research.展开更多
The rapid advancement of information technology has heightened interest in complementary devices and circuits.Conventional p-type semiconductors often lack sufficient electrical performance,thus prompting the search f...The rapid advancement of information technology has heightened interest in complementary devices and circuits.Conventional p-type semiconductors often lack sufficient electrical performance,thus prompting the search for new materials with high hole mobility and long-term stability.Elemental tellurium(Te),featuring a one-dimensional chiral atomic structure,has emerged as a promising candidate due to its narrow bandgap,high hole mobility,and versatility in industrial applications,particularly in electronics and renewable energy.This review highlights recent progress in Te nanostructures and related devices,focusing on synthesis methods,including vapor deposition and hydrothermal synthesis,which produce Te nanowires,nanorods,and other nanostructures.Critical applications in photodetectors,gas sensors,and energy harvesting devices are discussed,with a special emphasis on their role within the internet of things(IoT)framework,a rapidly growing field that is reshaping our technological landscape.The prospects and potential applications of Te-based technologies are also highlighted.展开更多
This paper offers a comprehensive overview of the operational principles of current therapeutic devices for diabetic foot management and further analyzes technological innovations and developmental trends,aiming to pr...This paper offers a comprehensive overview of the operational principles of current therapeutic devices for diabetic foot management and further analyzes technological innovations and developmental trends,aiming to promote research and development in the field of technological convergence.The ultimate goal is to enhance the cure rate for diabetic foot conditions and to decrease the incidence of amputations.The paper discusses the novel applications of ultrasound and optical therapeutic devices within the field of physiotherapy,the numerous advantages of chitosan dressings in biotechnology,the ongoing advancements and broader combined use of vacuum sealing drainage techniques,and the distinctive effects and innovations associated with micro-oxygen diffusion techniques.It thoroughly examines various technological mechanisms that facilitate wound healing,highlighting the clinical applications of ultrasonic atomized medicinal solutions,novel dressing graft copolymerization,continuous hypoxia diffusion,and the functions of vacuum drainage.These advancements facilitate the integration of drainage and dressing changes,with the potential to enhance the therapeutic effects of diabetic foot treatment and provide valuable insights for clinical application.展开更多
MANTA vascular closure device is an alternative vascular access closure device that is predominantly designed for large bore arteriotomy procedures.Its implementation to reduce morbidity and mortality following percut...MANTA vascular closure device is an alternative vascular access closure device that is predominantly designed for large bore arteriotomy procedures.Its implementation to reduce morbidity and mortality following percutaneous procedures including peripheral veno-arterial(VA)-extracorporeal membrane oxygenation(ECMO)in critically ill patients with various severe clinical conditions such as refractory cardiogenic shock remains to be under scientific discussion.The use of the MANTA vascular closure device leads to a sufficient reduction in a number of post-decannulation complications such as bleeding,vascular complications,inflammatory reactions and major amputation.Furthermore,the technical success of percutaneous decannulation of VA-ECMO with the MANTA vascular closure device appears to be safe and effective.It has been reported that MANTA vascular closure device exerted a strict similarity with other vascular surgical systems in safe profile regardless of the indication for its utilization.Overall,the immobilized patients achieved a favorable recovery outcome with MANTA including safe decannulation and low risk of vascular complications.The authors suggest the use of pulse wave distal Doppler technology for early detection of these clinically relevant complications.In conclusion,MANTA vascular closure device seems to be safe and effective technical approach to provide low-risk vascular assess for a long time for severe sick individuals.展开更多
Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must m...Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.展开更多
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing com...Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks.Two-dimensional(2D)materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices.Despite their ground-breaking progress over the last two decades,systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking.Therefore,in this review,we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics.Moreover,the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices.Hence,we discuss the physics of various 2D materials enabling them to fabricate smart devices.We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed.展开更多
Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during defo...Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical...Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical action mechanisms of DCD on bridge structures,a three-span continuous suspension bridge was taken as the engineering background in this study.The influence of different forms of DCD on the internal force and displacement of the components in the side span of the bridge and the structural dynamic characteristics were explored through numerical simulations.The results showed that the lack of DCD caused the main cable and main girder to have large vertical displacements.The stresses of other components were redistributed,and the safety factor of the suspenders at the side span was greatly reduced.The setting of DCD improved the vertical stiffness of the structure.The rigid DCD had larger internal forces,but its control effect on the internal forces at the side span was slightly better than that of the flexible DCD.Both forms of DCD effectively coordinated the deformation of the main cable and main girder and the stress distribution of components in the side span area.The choice of DCD form depends on the topographic factors of bridge sites and the design requirements of related components at the side span.展开更多
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ...Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.展开更多
The habitual use of smartphones during meals has become a common behavior,raising concerns about its potential impact on eating habits and metabolic health.The present narrative review investigates how using a smartph...The habitual use of smartphones during meals has become a common behavior,raising concerns about its potential impact on eating habits and metabolic health.The present narrative review investigates how using a smartphone or tablet during meals can cause distractions and negatively affect metabolic health.A comprehensive narrative review was conducted by synthesizing peer-reviewed studies on the interplay between smartphone use during meals,eating behaviors,and metabolic health.Relevant literature was identified through searches in electronic databases and organized thematically to highlight trends and research gaps.By synthesizing evidence from existing literature,this review highlights that smartphone use during meals is associated with increased caloric intake,altered food composition,and disruptions in postprandial metabolic responses.These effects are mediated by reduced meal awareness and psychological distractions,including multitasking.Variability in findings arises from differences in study designs and populations.This review identifies critical research gaps,including the lack of longitudinal studies and the need to explore mechanisms underlying these relationships.By summarizing trends and patterns,this narrative review offers valuable insights into the complex interplay between digital device use,eating habits,and metabolic health,providing a foundation for future research and interventions.展开更多
基金supported by National Natural Science Foundation of China(62174164,U23A20568,and U22A2075)National Key Research and Development Project(2021YFA1202600)+2 种基金Talent Plan of Shanghai Branch,Chinese Academy of Sciences(CASSHB-QNPD-2023-022)Ningbo Technology Project(2022A-007-C)Ningbo Key Research and Development Project(2023Z021).
文摘The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LQ24F040007)the National Natural Science Foundation of China(Grant No.U22A2075)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2024-1-21).
文摘To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grants No.2021B0909060002)National Natural Science Foundation of China(Grants No.62204219,62204140)Major Program of Natural Science Foundation of Zhejiang Province(Grants No.LDT23F0401).
文摘Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.
文摘Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.
基金the support from the National Natural Science Foundation of China(Grant Nos.52173298,52192611 and 61904012)the National Key R&D Project from Minister of Science and Technology(2021YFA1201603)+1 种基金Beijing Natural Science Foundation(Z230024)the Fundamental Research Funds for the Central Universities。
文摘Driven by the urgent demands for information technology,energy,and intelligent industry,third-generation semiconductor GaN has emerged as a pivotal component in electronic and optoelectronic devices.Fundamentally,piezoelectric polarization is the most essential feature of GaN materials.Incorporating piezotronics and piezo-phototronics,GaN materials synergize mechanical signals with electrical and optical signals,thereby achieving multi-field coupling that enhances device performance.Piezotronics regulates the carrier transport process in micro-nano devices,which has been proven to significantly improve the performance of devices(such as high electron mobility transistors and microLEDs)and brings many novel applications.This review examines GaN material properties and the theoretical foundations of piezotronics and phototronics.Furthermore,it delves into the fabrication and integration processes of GaN devices to achieve state-of-the-art performance.Additionally,this review analyzes the impact of introducing three-dimensional stress and regulatory forces on the electrical and optical output performance of devices.Moreover,it discusses the burgeoning applications of GaN devices in neural sensing,optoelectronic output,and energy harvesting.The potential of piezotroniccontrolled GaN devices provides valuable insights for future research and the development of multi-functional,diversified electronic devices.
文摘As a multipurpose research reactor,fission molybdenum-technetium irradiation production is one of the wide applications of China Advanced Research Reactor CARR.The goal of this study is to achieve“online loading and unloading”of the target during fission molybdenum-99(99Mo)to technetium-99m(99mTc)irradiation production without affecting the normal reactor operation and other irradiation channels,which will make CARR more efficient in performing irradiation tasks.This paper introduces the design principles,requirements and concept structural design of the irradiation device of fission 99Mo-99mTc.
基金The Natural Science Foundation of Guangdong Province(Project No.2023A1515012352)。
文摘Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing significant potential for various applications.This paper focuses on the regulation and application of ZnO-based p-n junctions and piezoelectric devices.It discusses in detail the preparation of ZnO materials,the construction of p-n junctions,the optimization of piezoelectric device performance,and its application in various fields.By employing different preparation methods and strategies,high-quality ZnO thin films can be grown,and effective control of p-type conductivity achieved.This study provides both a theoretical foundation and technical support for controlling the performance of ZnO-based piezoelectric devices,as well as paving new pathways for the broader application of ZnO materials.
基金supported by National Key Research and Development Program of China(Grant No.2022YFA1405600)Beijing Natural Science Foundation(Grant No.Z210006)+3 种基金National Natural Science Foundation of China—Young Scientists Fund(Grant No.12104051,62122004)Hong Kong Research Grant Council(Grant Nos.27206321,17205922,17212923 and C1009-22GF)Shenzhen Science and Technology Innovation Commission(SGDX20220530111405040)partially supported by ACCESS—AI Chip Center for Emerging Smart Systems,sponsored by Innovation and Technology Fund(ITF),Hong Kong SAR。
文摘Recurrent neural networks(RNNs)have proven to be indispensable for processing sequential and temporal data,with extensive applications in language modeling,text generation,machine translation,and time-series forecasting.Despite their versatility,RNNs are frequently beset by significant training expenses and slow convergence times,which impinge upon their deployment in edge AI applications.Reservoir computing(RC),a specialized RNN variant,is attracting increased attention as a cost-effective alternative for processing temporal and sequential data at the edge.RC’s distinctive advantage stems from its compatibility with emerging memristive hardware,which leverages the energy efficiency and reduced footprint of analog in-memory and in-sensor computing,offering a streamlined and energy-efficient solution.This review offers a comprehensive explanation of RC’s underlying principles,fabrication processes,and surveys recent progress in nano-memristive device based RC systems from the viewpoints of in-memory and in-sensor RC function.It covers a spectrum of memristive device,from established oxide-based memristive device to cutting-edge material science developments,providing readers with a lucid understanding of RC’s hardware implementation and fostering innovative designs for in-sensor RC systems.Lastly,we identify prevailing challenges and suggest viable solutions,paving the way for future advancements in in-sensor RC technology.
基金support from the National Natural Science Foundation of China(Grant No.62105148)China Postdoctoral Science Foundation(2022TQ0148 and 2023M731651)Postgraduate Research&Practice Innovation Program of NUAA(xcxjh20230609).
文摘Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency.
文摘Objective: To identify the principal factors associated with the occurrence and development of medical device-related pressure injuries (MDRPI) in adults admitted to hospitals. MDRPI, a peculiar subtype of pressure injuries (PI), result from the pression exerted by devices (or their fixation systems) applied for diagnostic and therapeutic purposes. MDRPI represent a serious problem for patients and healthcare systems. Understanding potential risk factors is an important step in implementing effective interventions. Methods: In this study, we will perform a systematic review;if possible, also a meta-analysis will be performed. The review will follow the preferred reporting items for systematic reviews and meta-analyses (PRISMA) reporting guidelines for systematic reviews. A rigorous literature search will be conducted both in electronic databases (Medline/PubMed, Embase, CINAHL, Web of Science, Scopus, Cochrane Library) to identify studies published since 2000 and in gray literature for unpublished studies. Pairs of researchers will identify relevant evidence, extract data, and assess risk of bias independently in each eligible study. Factors associated with the occurrence of MDRPI are considered the primary outcome. Secondary outcomes are prevalence and incidence of MDRPI, length of hospital stay, infections, and death. The evidence will be synthesized using the GRADE methodology. Results: Results are not currently available as this is a protocol for a systematic review. Conclusions: This systematic review will identify evidence on risk factors for developing MDRPI. We are confident that the results of this review will help to improve clinical practice and guide future research.
基金supported by a fellowship award from the Research Grants Council of the Hong Kong Special Administrative Region,China(CityU RFS2021−1S04)the Innovation and Technology Fund(MHP/044/23)from the Innovation and Technology Commission of the Hong Kong Government Special Administrative Region,China.
文摘The rapid advancement of information technology has heightened interest in complementary devices and circuits.Conventional p-type semiconductors often lack sufficient electrical performance,thus prompting the search for new materials with high hole mobility and long-term stability.Elemental tellurium(Te),featuring a one-dimensional chiral atomic structure,has emerged as a promising candidate due to its narrow bandgap,high hole mobility,and versatility in industrial applications,particularly in electronics and renewable energy.This review highlights recent progress in Te nanostructures and related devices,focusing on synthesis methods,including vapor deposition and hydrothermal synthesis,which produce Te nanowires,nanorods,and other nanostructures.Critical applications in photodetectors,gas sensors,and energy harvesting devices are discussed,with a special emphasis on their role within the internet of things(IoT)framework,a rapidly growing field that is reshaping our technological landscape.The prospects and potential applications of Te-based technologies are also highlighted.
基金Supported by Undergraduate Innovation and Entrepreneurship Training Program(S202410599085).
文摘This paper offers a comprehensive overview of the operational principles of current therapeutic devices for diabetic foot management and further analyzes technological innovations and developmental trends,aiming to promote research and development in the field of technological convergence.The ultimate goal is to enhance the cure rate for diabetic foot conditions and to decrease the incidence of amputations.The paper discusses the novel applications of ultrasound and optical therapeutic devices within the field of physiotherapy,the numerous advantages of chitosan dressings in biotechnology,the ongoing advancements and broader combined use of vacuum sealing drainage techniques,and the distinctive effects and innovations associated with micro-oxygen diffusion techniques.It thoroughly examines various technological mechanisms that facilitate wound healing,highlighting the clinical applications of ultrasonic atomized medicinal solutions,novel dressing graft copolymerization,continuous hypoxia diffusion,and the functions of vacuum drainage.These advancements facilitate the integration of drainage and dressing changes,with the potential to enhance the therapeutic effects of diabetic foot treatment and provide valuable insights for clinical application.
文摘MANTA vascular closure device is an alternative vascular access closure device that is predominantly designed for large bore arteriotomy procedures.Its implementation to reduce morbidity and mortality following percutaneous procedures including peripheral veno-arterial(VA)-extracorporeal membrane oxygenation(ECMO)in critically ill patients with various severe clinical conditions such as refractory cardiogenic shock remains to be under scientific discussion.The use of the MANTA vascular closure device leads to a sufficient reduction in a number of post-decannulation complications such as bleeding,vascular complications,inflammatory reactions and major amputation.Furthermore,the technical success of percutaneous decannulation of VA-ECMO with the MANTA vascular closure device appears to be safe and effective.It has been reported that MANTA vascular closure device exerted a strict similarity with other vascular surgical systems in safe profile regardless of the indication for its utilization.Overall,the immobilized patients achieved a favorable recovery outcome with MANTA including safe decannulation and low risk of vascular complications.The authors suggest the use of pulse wave distal Doppler technology for early detection of these clinically relevant complications.In conclusion,MANTA vascular closure device seems to be safe and effective technical approach to provide low-risk vascular assess for a long time for severe sick individuals.
基金supported by National Natural Science Foundation of China(No.12105067)the ITER Organization and China Domestic Agency for the support of this work(No.ITER5.5.P01.CN.05)。
文摘Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.
文摘Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks.Two-dimensional(2D)materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices.Despite their ground-breaking progress over the last two decades,systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking.Therefore,in this review,we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics.Moreover,the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices.Hence,we discuss the physics of various 2D materials enabling them to fabricate smart devices.We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed.
基金supported by Korea Institute of Science and Technology(KIST)Institutional Program and Open Research Program(ORP)This work was also supported by grant from the National Research Foundation(NRF)of Korea government(RS-2024-00433159 and RS-2023-00208313)from ITECH R&D program of MOTIE/KEIT(RS-2023-00257573).
文摘Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
基金The National Natural Science Foundation of China(No.52338011)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_0067).
文摘Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical action mechanisms of DCD on bridge structures,a three-span continuous suspension bridge was taken as the engineering background in this study.The influence of different forms of DCD on the internal force and displacement of the components in the side span of the bridge and the structural dynamic characteristics were explored through numerical simulations.The results showed that the lack of DCD caused the main cable and main girder to have large vertical displacements.The stresses of other components were redistributed,and the safety factor of the suspenders at the side span was greatly reduced.The setting of DCD improved the vertical stiffness of the structure.The rigid DCD had larger internal forces,but its control effect on the internal forces at the side span was slightly better than that of the flexible DCD.Both forms of DCD effectively coordinated the deformation of the main cable and main girder and the stress distribution of components in the side span area.The choice of DCD form depends on the topographic factors of bridge sites and the design requirements of related components at the side span.
基金Project supported by the Scientific Research Project of China Three Gorges Corporation(Grant No.202203092)。
文摘Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.
文摘The habitual use of smartphones during meals has become a common behavior,raising concerns about its potential impact on eating habits and metabolic health.The present narrative review investigates how using a smartphone or tablet during meals can cause distractions and negatively affect metabolic health.A comprehensive narrative review was conducted by synthesizing peer-reviewed studies on the interplay between smartphone use during meals,eating behaviors,and metabolic health.Relevant literature was identified through searches in electronic databases and organized thematically to highlight trends and research gaps.By synthesizing evidence from existing literature,this review highlights that smartphone use during meals is associated with increased caloric intake,altered food composition,and disruptions in postprandial metabolic responses.These effects are mediated by reduced meal awareness and psychological distractions,including multitasking.Variability in findings arises from differences in study designs and populations.This review identifies critical research gaps,including the lack of longitudinal studies and the need to explore mechanisms underlying these relationships.By summarizing trends and patterns,this narrative review offers valuable insights into the complex interplay between digital device use,eating habits,and metabolic health,providing a foundation for future research and interventions.