The performance of the graph-based scheduling for device-to-device communications overlaying cellular networks is studied. The graph-based scheduling consists of two stages, the frequency assignment stage and the time...The performance of the graph-based scheduling for device-to-device communications overlaying cellular networks is studied. The graph-based scheduling consists of two stages, the frequency assignment stage and the time slot scheduling stage. For such scheduling, a theoretical method to analyze the average spectrum efficiency of the D2D subsystem is proposed. The method consists of three steps. First, the frequency assignment stage is analyzed and the approximate formula of the average number of the D2D links which are assigned the same frequency is derived. Secondly, the time slot scheduling stage is analyzed and the approximate formula of the average probability of a D2D link being scheduled in a time slot is derived. Thirdly, the average spectrum efficiency of the D2D subsystem is analyzed and the corresponding approximate formula is derived. Analysis results show that the average spectrum efficiency of the D2D subsystem is approximately inversely linearly proportional to the second- order origin moment of the normalized broadcast radius of D2D links. Simulation results show that the proposed method can correctly predict the average spectrum efficiency of the D2D subsystem.展开更多
Based on the conflict graph model which is formulated as a binary integer optimization problem, a resource allocation method to support device-to-device (D2D) communications in ceUular networks is proposed. First, a...Based on the conflict graph model which is formulated as a binary integer optimization problem, a resource allocation method to support device-to-device (D2D) communications in ceUular networks is proposed. First, a frequency resource assignment algorithm is presented which assigns each D2D link one frequency resource block. For this algorithm, frequency resource blocks are assigned so that the frequency resource spatial reuse opportunities in the cellular networks can be fully exploited. Then a slot scheduling algorithm is presented which schedules time slots among D2D links assigned the same frequency resource block. For this algorithm, time slot resources are scheduled so that the proportional fairness among D2D links which are assigned the same frequency resource block can be achieved. The performance of the proposed method is evaluated via computer simulations. The simulation results show that the proposed method can well support D2D communications in cellular networks.展开更多
Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the stric...Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the strict transmission requirements on reliability and latency,Device-to-Device(D2D)communications is introduced to assist haptic communications.In particular,the teleoperators with poor channel quality are assisted by auxiliaries,and each auxiliary and its corresponding teleoperator constitute a D2D pair.However,the haptic interaction and the scarcity of radio resources pose severe challenges to the resource allocation,especially facing the sporadic packet arrivals.First,the contentionbased access scheme is applied to achieve low-latency transmission,where the resource scheduling latency is omitted and users can directly access available resources.In this context,we derive the reliability index of D2D pairs under the contention-based access scheme,i.e.,closed-loop packet error probability.Then,the reliability performance is guaranteed by bidirectional power control,which aims to minimize the sum packet error probability of all D2D pairs.Potential game theory is introduced to solve the problem with low complexity.Accordingly,a distributed power control algorithm based on synchronous log-linear learning is proposed to converge to the optimal Nash Equilibrium.Experimental results demonstrate the superiority of the proposed learning algorithm.展开更多
In this paper, we investigate the energy efficiency and spectrum efficiency, including one-hop device-to-device(D2D) communications mode and two-way amplify-and-forward(AF) relaying D2D communications mode in underlay...In this paper, we investigate the energy efficiency and spectrum efficiency, including one-hop device-to-device(D2D) communications mode and two-way amplify-and-forward(AF) relaying D2D communications mode in underlay D2D communications enabled cellular networks. An analysis of average energy efficiency and spectrum efficiency are developed and closed-form expressions are obtained for two types of D2D communications modes under the effect of Rayleigh fading channel, path loss, and co-channel interference. Analytical results are validated through numerical simulations. Based on the simulation, the effects of the interference, the distance between D2D pair and the position of relay node on the energy efficiency and spectrum efficiency of D2D communications are investigated. The optimal D2D transmission powers of these two modes to maximize the energy efficiency are also investigated.展开更多
This paper investigates the device-to-device(D2 D) communication underlaying multi-user multi-input multi-output(MU-MIMO) cellular networks. It is assumed that D2 D users reuse the downlink time-frequency resources of...This paper investigates the device-to-device(D2 D) communication underlaying multi-user multi-input multi-output(MU-MIMO) cellular networks. It is assumed that D2 D users reuse the downlink time-frequency resources of cellular links, and the base station(BS) is assumed to be equipped with multiple antennas. We investigate the ergodic achievable sum rate of the system when the interference cancellation(IC) precoding strategy is employed at the BS. The distributions of the received signal-to-interference-plus-noise ratio(SINR) for each link are firstly analyzed, and an exact ergodic achievable sum rate of the whole system with closedform expressions is then derived. Furthermore, we present novel upper and lower bounds with simpler expressions, which are later verified to be fairly close to the Monte-Carlo simulations. All the expressions we presented are suitable for arbitrary network topology and arbitrary number of antennas at BS. Based on the derived bounds, the influence of the antennas at BS on system performance is then analyzed. We reveal that the system performance increases along with the number of antennas at BS in a logarithmic way. The accuracy of our analytical results is validated via comparisons with Monte-Carlo simulations.展开更多
One of the most effective technology for the 5G mobile communications is Device-to-device(D2D)communication which is also called terminal pass-through technology.It can directly communicate between devices under the c...One of the most effective technology for the 5G mobile communications is Device-to-device(D2D)communication which is also called terminal pass-through technology.It can directly communicate between devices under the control of a base station and does not require a base station to forward it.The advantages of applying D2D communication technology to cellular networks are:It can increase the communication system capacity,improve the system spectrum efficiency,increase the data transmission rate,and reduce the base station load.Aiming at the problem of co-channel interference between the D2D and cellular users,this paper proposes an efficient algorithm for resource allocation based on the idea of Q-learning,which creates multi-agent learners from multiple D2D users,and the system throughput is determined from the corresponding state-learning of the Q value list and the maximum Q action is obtained through dynamic power for control for D2D users.The mutual interference between the D2D users and base stations and exact channel state information is not required during the Q-learning process and symmetric data transmission mechanism is adopted.The proposed algorithm maximizes the system throughput by controlling the power of D2D users while guaranteeing the quality-of-service of the cellular users.Simulation results show that the proposed algorithm effectively improves system performance as compared with existing algorithms.展开更多
Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-wa...Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-way amplify-and-forward relaying protocol over Rayleigh fading channels. Considering the co-channel interference from cellular user at the D2 D node,the approximate expression for the overall outage probability was derived. Furthermore,a power allocation optimum method to minimize the outage probability was developed,and the closed form expression for the optimal power allocation coefficient at the relay was derived. Simulation results demonstrate accuracy of the derived outage probability expressions. Simulation results also demonstrate that the outage performance can be improved using the proposed optimal power allocation method.展开更多
Joint mode selection and link allocation are crucial to achieve the advantage of Device-to-Device(D2 D) communications in improving spectral efficiency. In practice, cellular users tend to not be totally altruistic or...Joint mode selection and link allocation are crucial to achieve the advantage of Device-to-Device(D2 D) communications in improving spectral efficiency. In practice, cellular users tend to not be totally altruistic or absolutely selfish. How to stimulate them to devote their links and how to allocate their links to D2 D pair candidates efficiently are two main challenges. In this paper, we encourage cellular users through the variable payment with regard to the social tie strength between cellular users and D2 D pair candidates. In particular, the social tie strength is inferred through a graph inference model and its impact on the payment is quantified as a negative exponential function. Then, we propose a resource scheduling optimization model based on the non-transferable utility coalition formation game, and a distributed coalition formation algorithm based on the Pareto preference and merge-and-split rule. From them, the final coalition structure is obtained, which reflects the strategy of mode selection and link allocation. Numerical results are presented to verify the effectiveness of our proposed scheme.展开更多
Device-to-Device(D2D)communication is a promising technology that can reduce the burden on cellular networks while increasing network capacity.In this paper,we focus on the channel resource allocation and power contro...Device-to-Device(D2D)communication is a promising technology that can reduce the burden on cellular networks while increasing network capacity.In this paper,we focus on the channel resource allocation and power control to improve the system resource utilization and network throughput.Firstly,we treat each D2D pair as an independent agent.Each agent makes decisions based on the local channel states information observed by itself.The multi-agent Reinforcement Learning(RL)algorithm is proposed for our multi-user system.We assume that the D2D pair do not possess any information on the availability and quality of the resource block to be selected,so the problem is modeled as a stochastic non-cooperative game.Hence,each agent becomes a player and they make decisions together to achieve global optimization.Thereby,the multi-agent Q-learning algorithm based on game theory is established.Secondly,in order to accelerate the convergence rate of multi-agent Q-learning,we consider a power allocation strategy based on Fuzzy C-means(FCM)algorithm.The strategy firstly groups the D2D users by FCM,and treats each group as an agent,and then performs multi-agent Q-learning algorithm to determine the power for each group of D2D users.The simulation results show that the Q-learning algorithm based on multi-agent can improve the throughput of the system.In particular,FCM can greatly speed up the convergence of the multi-agent Q-learning algorithm while improving system throughput.展开更多
With increasing the demand for transmitting secure information in wireless networks,deviceto-device(D2D)communication has great potential to improve system performance.As a well-known security risk is eavesdropping in...With increasing the demand for transmitting secure information in wireless networks,deviceto-device(D2D)communication has great potential to improve system performance.As a well-known security risk is eavesdropping in D2D communication,ensuring information security is quite challenging.In this paper,we first obtain the closed-forms of the secrecy outage probability(SOP)and the secrecy ergodic capacity(SEC)for direct and decodeand-forward(DF)relay modes.Numerical results are presented to verify the theoretical results,and these results show the cases that the DF relay mode improves security performance compared to the direct mode at long distances between the transmitter and receiver nodes.Further,we look into the optimization problems of secure resource allocation in D2D communication to maximize the SEC and to minimize the SOP by considering the strictly positive secrecy capacity constraint as a mixed-integer non-linear programming(MINLP)problem.In the continue,we convert the MINLP to convex optimization.Finally,we solve this program with a dual method and obtain an optimal solution in the direct and DF relay modes.展开更多
To improve the connectivity of device-to-device(D2D)communication between delay-assisted vehicles,a multi-hop D2D relay selection strategy based on outage probability is proposed.The algorithm firstly clusters the rel...To improve the connectivity of device-to-device(D2D)communication between delay-assisted vehicles,a multi-hop D2D relay selection strategy based on outage probability is proposed.The algorithm firstly clusters the relay users based on the distance of D2D users,and determines the number of one-hop relay nodes through the outage probability threshold.Two-hop relay nodes directly select the same number of relays as one-hop relay nodes according to the descending order of signal noise ratio(SNR)to establish a square matrix.The Hungarian algorithm is used to assign the relay nodes of two clusters to complete the inter relay communication.Finally,the information is sent to the D2D receiver by combining technology.The simulation results show that this algorithm can reduce the cost of relay probing process and the outage probability of system in multi-hop D2D relay communication.展开更多
The next-generation wireless networks are expected to provide higher capacity,system throughput with improved energy efficiency.One of the key technologies,to meet the demand for high-rate transmission,is deviceto-dev...The next-generation wireless networks are expected to provide higher capacity,system throughput with improved energy efficiency.One of the key technologies,to meet the demand for high-rate transmission,is deviceto-device(D2D)communication which allows users who are close to communicating directly instead of transiting through base stations,and D2D communication users to share the cellular user chain under the control of the cellular network.As a new generation of cellular network technology,D2D communication technology has the advantages of improving spectrum resource utilization and improving system throughput and has become one of the key technologies that have been widely concerned in the industry.However,due to the sharing of cellular network resources,D2D communication causes severe interference to existing cellular systems.One of the most important factors in D2D communication is the spectrum resources utilization and energy consumption which needs considerable attention from research scholars.To address these issues,this paper proposes an efficient algorithm based on the idea of particle swarm optimization.The main idea is to maximize the energy efficiency based on the overall link optimization of D2D user pairs by generating an allocation matrix of spectrum and power.The D2D users are enabled to reuse multiple cellular user’s resources by enhancing their total energy efficiency based on the quality of service constraints and the modification of location and speed in particle swarm.Such constraint also provides feasibility to solve the original fractional programming problem.Simulation results indicate that the proposed scheme effectively improved the energy efficiency and spectrum utilization as compared with other competing alternatives.展开更多
In this paper, we study D2D (Device-to-Device) communication underlying LTE-Advanced uplink system. Since D2D communication reuses uplink resources with cellular communication in this scenario, it’s hard for D2D user...In this paper, we study D2D (Device-to-Device) communication underlying LTE-Advanced uplink system. Since D2D communication reuses uplink resources with cellular communication in this scenario, it’s hard for D2D users to avoid the interference from cellular users while cellular users are communication with eNB (evolved Node B). HARQ (Hybrid Automatic Repeat reQuest) is widely used in LTE-Advanced system in order to improve the accurate rate of cellular communication. Hence, we consider studying the integration of D2D with HARQ, so as to achieve the purpose of improving the throughput of D2D communication and the performance of overall system. Synchronous HARQ is considered to introduce into D2D communication procedures. What’s more, this idea will be taken into system-level simulation. From the simulation results, we can see that the throughput of D2D communication gets a lot of gain and the performance of overall system is improved as well. In addition, Synchronous HARQ technique can significantly decrease the BLER (Block Error Rate) of D2D communication, especially for which in a bad channel condition.展开更多
A device-to-device (D2D) communication mode underlaying cellular network in a single- cell environment is introduced. A practical method based on link adaptation with automatic repeat request (ARQ) is presented. L...A device-to-device (D2D) communication mode underlaying cellular network in a single- cell environment is introduced. A practical method based on link adaptation with automatic repeat request (ARQ) is presented. Link adaptation technique, which combines adaptive modulation and coding ( AMC ) with truncated ARQ, can maximize the cellular UEs' data rate under prescribed delay and performance constraints. The proposed method can maximize the total transmission rate when an outage probability is determined. Numerical results show that with proper power control, the in- terference between the two links can be coordinated to increase the sum rate without overwhelming the cellular service.展开更多
As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a rel...As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.展开更多
As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or ...As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or throughput are regarded as optimization criterion. In this paper, a combining call admission control(CAC) and power control scheme under guaranteeing QoS of every user equipment(UE) is proposed. First, a simple CAC scheme is introduced. Then based on the CAC scheme, a combining call admission control and power control scheme is proposed. Next, the performance of the proposed scheme is evaluated. Finally, maximum DUE pair number and average transmitting power is calculated. Simulation results show that D2 D communications with the proposed combining call admission control and power control scheme can effectively improve the maximum DUE pair number under the premise of meeting necessary QoS.展开更多
In device-to-device(D2D) communications, device terminal relaying makes it possible for devices in a network to function as transmission relays for each other to enhance the spectral efficiency. In this paper we consi...In device-to-device(D2D) communications, device terminal relaying makes it possible for devices in a network to function as transmission relays for each other to enhance the spectral efficiency. In this paper we consider a cooperative D2D communication system with simultaneous wireless information and power transfer(SWIPT). The cooperative D2D communication scheme allows two nearby devices to communicate with each other in the licensed cellular bandwidth by assigning D2D transmitters as half-duplex(HD) relay to assists cellular downlink transmissions. In particular, we focus on secure information transmission for the cellular users when the idle D2D users are the potential eavesdroppers. We aim to design secure beamforming schemes to maximize the D2D users data rate while guaranteeing the secrecy rate requirements of the cellular users and the minimum required amounts of power transferred to the idle D2D users. To solve this non-convex problem, a semi-definite programming relaxation(SDR) approach is adopted to obtain the optimal solution. Furthermore, we propose two suboptimal secure beamforming schemes with low computational complexity for providing secure communication and efficient energy transfer. Simulation results demonstrate the superiority of our proposed scheme.展开更多
Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selec...Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.展开更多
This paper investigates the device-to-device(D2D) communication underlaying cellular network assisted by a two-way decode-and-forward relay node. We assume the base station(BS) is equipped with M-antenna and serves it...This paper investigates the device-to-device(D2D) communication underlaying cellular network assisted by a two-way decode-and-forward relay node. We assume the base station(BS) is equipped with M-antenna and serves its own cellular user while the D2D users communicate via a two-way decode-and-forward relay node. Both beamforming(BF) and interference cancellation(IC) strategies at the BS are considered to improve the performance for the cellular link and D2D link, respectively. We first analyze the received signal-to-interference-plus-noise for the cellular link under BF and IC strategies and then derive the exact closed-form expressions for the cellular link. Asymmetric and symmetric cases are discussed for various locations of each user. Finally, the approximations for high signal-to-noise regime are also presented. Numerical results demonstrate the accuracy of the analytical and asymptotic results.展开更多
By reusing the spectrum of a cellular network, device-to-device(D2D) communications is known to greatly improve the spectral efficiency bypassing the base station(BS) of the cellular network. Antenna selection is the ...By reusing the spectrum of a cellular network, device-to-device(D2D) communications is known to greatly improve the spectral efficiency bypassing the base station(BS) of the cellular network. Antenna selection is the most cost efficient scheme for interference management, which is crucial to D2D systems. This paper investigates the achievable rate performance of the D2D communication underlaying the cellular network where a multiple-antenna base station with antenna selection scheme is deployed. We derive an exact closed-form expression of the ergodic achievable rate. Also, using Jensen's inequality, two pairs of upper and lower bounds of the rate are derived and we validate the tightness of the two sets of bounds. Based on the bounds obtained, we analyze the ergodic achievable rate in noise-limited scenario, interference-limited high SNR scenario and larger-scale antenna systems. Our analysis shows that the presence of D2D users could be counter-productive if the SNR at cellular UE is high. Further analysis shows that the relationship between the ergodic rate and the number of antennas it positive, but keeps decreasing as the antenna number increasing. These show the inefficiency of antenna selection in D2D interference management.展开更多
基金The National Natural Science Foundation of China(No.61571111)the National High Technology Research and Development Program of China(863 Program)(No.2014AA01A703,2015AA01A706)the Fundamental Research Funds for the Central Universities of China(No.2242016K40098)
文摘The performance of the graph-based scheduling for device-to-device communications overlaying cellular networks is studied. The graph-based scheduling consists of two stages, the frequency assignment stage and the time slot scheduling stage. For such scheduling, a theoretical method to analyze the average spectrum efficiency of the D2D subsystem is proposed. The method consists of three steps. First, the frequency assignment stage is analyzed and the approximate formula of the average number of the D2D links which are assigned the same frequency is derived. Secondly, the time slot scheduling stage is analyzed and the approximate formula of the average probability of a D2D link being scheduled in a time slot is derived. Thirdly, the average spectrum efficiency of the D2D subsystem is analyzed and the corresponding approximate formula is derived. Analysis results show that the average spectrum efficiency of the D2D subsystem is approximately inversely linearly proportional to the second- order origin moment of the normalized broadcast radius of D2D links. Simulation results show that the proposed method can correctly predict the average spectrum efficiency of the D2D subsystem.
基金The National High Technology Research and Development Program of China(863 Program)(No.SS2014AA012103)the National Natural Science Foundation of China(No.61001103)
文摘Based on the conflict graph model which is formulated as a binary integer optimization problem, a resource allocation method to support device-to-device (D2D) communications in ceUular networks is proposed. First, a frequency resource assignment algorithm is presented which assigns each D2D link one frequency resource block. For this algorithm, frequency resource blocks are assigned so that the frequency resource spatial reuse opportunities in the cellular networks can be fully exploited. Then a slot scheduling algorithm is presented which schedules time slots among D2D links assigned the same frequency resource block. For this algorithm, time slot resources are scheduled so that the proportional fairness among D2D links which are assigned the same frequency resource block can be achieved. The performance of the proposed method is evaluated via computer simulations. The simulation results show that the proposed method can well support D2D communications in cellular networks.
基金supported in part by the Jiangsu Provincial Natural Science Foundation for Excellent Young Scholars(Grant No.BK20170089)in part by the National Natural Science Foundation of China(Grant No.61671474)in part by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(Grant No.BK20180028).
文摘Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the strict transmission requirements on reliability and latency,Device-to-Device(D2D)communications is introduced to assist haptic communications.In particular,the teleoperators with poor channel quality are assisted by auxiliaries,and each auxiliary and its corresponding teleoperator constitute a D2D pair.However,the haptic interaction and the scarcity of radio resources pose severe challenges to the resource allocation,especially facing the sporadic packet arrivals.First,the contentionbased access scheme is applied to achieve low-latency transmission,where the resource scheduling latency is omitted and users can directly access available resources.In this context,we derive the reliability index of D2D pairs under the contention-based access scheme,i.e.,closed-loop packet error probability.Then,the reliability performance is guaranteed by bidirectional power control,which aims to minimize the sum packet error probability of all D2D pairs.Potential game theory is introduced to solve the problem with low complexity.Accordingly,a distributed power control algorithm based on synchronous log-linear learning is proposed to converge to the optimal Nash Equilibrium.Experimental results demonstrate the superiority of the proposed learning algorithm.
基金supported by the National Natural Science Foundation of China under Grant U1805262, 61871446, 61671251 and 61701201the Natural Science Foundation of Jiangsu Province under Grant No.BK20170758+2 种基金the Natural Science Foundation for colleges and universities of Jiangsu Province under Grant No.17KJB510011the open research fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2015D10Project of Key Laboratory of Wireless Communications of Jiangsu Province under Grant No.NK214001
文摘In this paper, we investigate the energy efficiency and spectrum efficiency, including one-hop device-to-device(D2D) communications mode and two-way amplify-and-forward(AF) relaying D2D communications mode in underlay D2D communications enabled cellular networks. An analysis of average energy efficiency and spectrum efficiency are developed and closed-form expressions are obtained for two types of D2D communications modes under the effect of Rayleigh fading channel, path loss, and co-channel interference. Analytical results are validated through numerical simulations. Based on the simulation, the effects of the interference, the distance between D2D pair and the position of relay node on the energy efficiency and spectrum efficiency of D2D communications are investigated. The optimal D2D transmission powers of these two modes to maximize the energy efficiency are also investigated.
基金supported by the Natural Science Foundation of Jiangsu Province (No. BK20170758)the National Natural Science Foundation for Young Scholars of China (No. 61701201)+1 种基金the Natural Science Foundation for colleges and universities of Jiangsu Province (No. 17KJB510011)Project of Key Laboratory of Wireless Communications of Jiangsu Province
文摘This paper investigates the device-to-device(D2 D) communication underlaying multi-user multi-input multi-output(MU-MIMO) cellular networks. It is assumed that D2 D users reuse the downlink time-frequency resources of cellular links, and the base station(BS) is assumed to be equipped with multiple antennas. We investigate the ergodic achievable sum rate of the system when the interference cancellation(IC) precoding strategy is employed at the BS. The distributions of the received signal-to-interference-plus-noise ratio(SINR) for each link are firstly analyzed, and an exact ergodic achievable sum rate of the whole system with closedform expressions is then derived. Furthermore, we present novel upper and lower bounds with simpler expressions, which are later verified to be fairly close to the Monte-Carlo simulations. All the expressions we presented are suitable for arbitrary network topology and arbitrary number of antennas at BS. Based on the derived bounds, the influence of the antennas at BS on system performance is then analyzed. We reveal that the system performance increases along with the number of antennas at BS in a logarithmic way. The accuracy of our analytical results is validated via comparisons with Monte-Carlo simulations.
文摘One of the most effective technology for the 5G mobile communications is Device-to-device(D2D)communication which is also called terminal pass-through technology.It can directly communicate between devices under the control of a base station and does not require a base station to forward it.The advantages of applying D2D communication technology to cellular networks are:It can increase the communication system capacity,improve the system spectrum efficiency,increase the data transmission rate,and reduce the base station load.Aiming at the problem of co-channel interference between the D2D and cellular users,this paper proposes an efficient algorithm for resource allocation based on the idea of Q-learning,which creates multi-agent learners from multiple D2D users,and the system throughput is determined from the corresponding state-learning of the Q value list and the maximum Q action is obtained through dynamic power for control for D2D users.The mutual interference between the D2D users and base stations and exact channel state information is not required during the Q-learning process and symmetric data transmission mechanism is adopted.The proposed algorithm maximizes the system throughput by controlling the power of D2D users while guaranteeing the quality-of-service of the cellular users.Simulation results show that the proposed algorithm effectively improves system performance as compared with existing algorithms.
基金supported by the National High Technology Research and Development Program of China(863 program) (No.2014AA01A705)partly supported by National Natural Science Foundation of China (No. 61271236)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK20130875)Project of Key Laboratory of Wireless Communications of Jiangsu Province (No.NK214001)
文摘Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-way amplify-and-forward relaying protocol over Rayleigh fading channels. Considering the co-channel interference from cellular user at the D2 D node,the approximate expression for the overall outage probability was derived. Furthermore,a power allocation optimum method to minimize the outage probability was developed,and the closed form expression for the optimal power allocation coefficient at the relay was derived. Simulation results demonstrate accuracy of the derived outage probability expressions. Simulation results also demonstrate that the outage performance can be improved using the proposed optimal power allocation method.
基金supported by Natural Science Foundations of China (No. 61671474)Jiangsu Provincial Natural Science Foundation for Excellent Young Scholars (No. BK20170089)
文摘Joint mode selection and link allocation are crucial to achieve the advantage of Device-to-Device(D2 D) communications in improving spectral efficiency. In practice, cellular users tend to not be totally altruistic or absolutely selfish. How to stimulate them to devote their links and how to allocate their links to D2 D pair candidates efficiently are two main challenges. In this paper, we encourage cellular users through the variable payment with regard to the social tie strength between cellular users and D2 D pair candidates. In particular, the social tie strength is inferred through a graph inference model and its impact on the payment is quantified as a negative exponential function. Then, we propose a resource scheduling optimization model based on the non-transferable utility coalition formation game, and a distributed coalition formation algorithm based on the Pareto preference and merge-and-split rule. From them, the final coalition structure is obtained, which reflects the strategy of mode selection and link allocation. Numerical results are presented to verify the effectiveness of our proposed scheme.
基金This work was supported by the National Natural Science Foundation of China(61871058)Key Special Project in Intergovernmental International Scientific and Technological Innovation Cooperation of National Key Research and Development Program(2017YFE0118600).
文摘Device-to-Device(D2D)communication is a promising technology that can reduce the burden on cellular networks while increasing network capacity.In this paper,we focus on the channel resource allocation and power control to improve the system resource utilization and network throughput.Firstly,we treat each D2D pair as an independent agent.Each agent makes decisions based on the local channel states information observed by itself.The multi-agent Reinforcement Learning(RL)algorithm is proposed for our multi-user system.We assume that the D2D pair do not possess any information on the availability and quality of the resource block to be selected,so the problem is modeled as a stochastic non-cooperative game.Hence,each agent becomes a player and they make decisions together to achieve global optimization.Thereby,the multi-agent Q-learning algorithm based on game theory is established.Secondly,in order to accelerate the convergence rate of multi-agent Q-learning,we consider a power allocation strategy based on Fuzzy C-means(FCM)algorithm.The strategy firstly groups the D2D users by FCM,and treats each group as an agent,and then performs multi-agent Q-learning algorithm to determine the power for each group of D2D users.The simulation results show that the Q-learning algorithm based on multi-agent can improve the throughput of the system.In particular,FCM can greatly speed up the convergence of the multi-agent Q-learning algorithm while improving system throughput.
文摘With increasing the demand for transmitting secure information in wireless networks,deviceto-device(D2D)communication has great potential to improve system performance.As a well-known security risk is eavesdropping in D2D communication,ensuring information security is quite challenging.In this paper,we first obtain the closed-forms of the secrecy outage probability(SOP)and the secrecy ergodic capacity(SEC)for direct and decodeand-forward(DF)relay modes.Numerical results are presented to verify the theoretical results,and these results show the cases that the DF relay mode improves security performance compared to the direct mode at long distances between the transmitter and receiver nodes.Further,we look into the optimization problems of secure resource allocation in D2D communication to maximize the SEC and to minimize the SOP by considering the strictly positive secrecy capacity constraint as a mixed-integer non-linear programming(MINLP)problem.In the continue,we convert the MINLP to convex optimization.Finally,we solve this program with a dual method and obtain an optimal solution in the direct and DF relay modes.
基金National Natural Science Foundation of China(No.61801106)。
文摘To improve the connectivity of device-to-device(D2D)communication between delay-assisted vehicles,a multi-hop D2D relay selection strategy based on outage probability is proposed.The algorithm firstly clusters the relay users based on the distance of D2D users,and determines the number of one-hop relay nodes through the outage probability threshold.Two-hop relay nodes directly select the same number of relays as one-hop relay nodes according to the descending order of signal noise ratio(SNR)to establish a square matrix.The Hungarian algorithm is used to assign the relay nodes of two clusters to complete the inter relay communication.Finally,the information is sent to the D2D receiver by combining technology.The simulation results show that this algorithm can reduce the cost of relay probing process and the outage probability of system in multi-hop D2D relay communication.
文摘The next-generation wireless networks are expected to provide higher capacity,system throughput with improved energy efficiency.One of the key technologies,to meet the demand for high-rate transmission,is deviceto-device(D2D)communication which allows users who are close to communicating directly instead of transiting through base stations,and D2D communication users to share the cellular user chain under the control of the cellular network.As a new generation of cellular network technology,D2D communication technology has the advantages of improving spectrum resource utilization and improving system throughput and has become one of the key technologies that have been widely concerned in the industry.However,due to the sharing of cellular network resources,D2D communication causes severe interference to existing cellular systems.One of the most important factors in D2D communication is the spectrum resources utilization and energy consumption which needs considerable attention from research scholars.To address these issues,this paper proposes an efficient algorithm based on the idea of particle swarm optimization.The main idea is to maximize the energy efficiency based on the overall link optimization of D2D user pairs by generating an allocation matrix of spectrum and power.The D2D users are enabled to reuse multiple cellular user’s resources by enhancing their total energy efficiency based on the quality of service constraints and the modification of location and speed in particle swarm.Such constraint also provides feasibility to solve the original fractional programming problem.Simulation results indicate that the proposed scheme effectively improved the energy efficiency and spectrum utilization as compared with other competing alternatives.
文摘In this paper, we study D2D (Device-to-Device) communication underlying LTE-Advanced uplink system. Since D2D communication reuses uplink resources with cellular communication in this scenario, it’s hard for D2D users to avoid the interference from cellular users while cellular users are communication with eNB (evolved Node B). HARQ (Hybrid Automatic Repeat reQuest) is widely used in LTE-Advanced system in order to improve the accurate rate of cellular communication. Hence, we consider studying the integration of D2D with HARQ, so as to achieve the purpose of improving the throughput of D2D communication and the performance of overall system. Synchronous HARQ is considered to introduce into D2D communication procedures. What’s more, this idea will be taken into system-level simulation. From the simulation results, we can see that the throughput of D2D communication gets a lot of gain and the performance of overall system is improved as well. In addition, Synchronous HARQ technique can significantly decrease the BLER (Block Error Rate) of D2D communication, especially for which in a bad channel condition.
基金Supported by the China Major National S&T Program(2010ZX03003-003)China-EU International Scientific and Technological Cooperation Program(0902)+1 种基金the Sino-Swedish IMT-Advanced and Beyond Cooperative Program(2008DFA11780)the Open Project Program of Guangdong Provincial Key Laboratory of Short-Range Wireless Detection and Communication and PCSIRT-IRT(1005)
文摘A device-to-device (D2D) communication mode underlaying cellular network in a single- cell environment is introduced. A practical method based on link adaptation with automatic repeat request (ARQ) is presented. Link adaptation technique, which combines adaptive modulation and coding ( AMC ) with truncated ARQ, can maximize the cellular UEs' data rate under prescribed delay and performance constraints. The proposed method can maximize the total transmission rate when an outage probability is determined. Numerical results show that with proper power control, the in- terference between the two links can be coordinated to increase the sum rate without overwhelming the cellular service.
基金supported by the ZTE Corp under Grant CON1412150018the Natural Science Foundation of China under Grant 61572389 and 61471361
文摘As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.
基金supported in part by the Project of National Natural Science Foundation of China (61301110)Project of Shanghai Key Laboratory of Intelligent Information Processing, China [grant number IIPL-2014-005]+1 种基金the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Project of Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-Aged Teachers and Presidents
文摘As device-to-device(D2D) communications usually reuses the resource of cellular networks, call admission control(CAC) and power control are crucial problems. However in most power control schemes, total data rates or throughput are regarded as optimization criterion. In this paper, a combining call admission control(CAC) and power control scheme under guaranteeing QoS of every user equipment(UE) is proposed. First, a simple CAC scheme is introduced. Then based on the CAC scheme, a combining call admission control and power control scheme is proposed. Next, the performance of the proposed scheme is evaluated. Finally, maximum DUE pair number and average transmitting power is calculated. Simulation results show that D2 D communications with the proposed combining call admission control and power control scheme can effectively improve the maximum DUE pair number under the premise of meeting necessary QoS.
基金supported in part by National Natural Science Foundation of China under Grants 61602048National Natural Science Foundation of China under Grants 61471060+1 种基金Creative Research Groups of China under Grants 61421061National Science and Technology Major Project of the Ministry of Science and Technology of China under Grants 2015ZX03001025-002
文摘In device-to-device(D2D) communications, device terminal relaying makes it possible for devices in a network to function as transmission relays for each other to enhance the spectral efficiency. In this paper we consider a cooperative D2D communication system with simultaneous wireless information and power transfer(SWIPT). The cooperative D2D communication scheme allows two nearby devices to communicate with each other in the licensed cellular bandwidth by assigning D2D transmitters as half-duplex(HD) relay to assists cellular downlink transmissions. In particular, we focus on secure information transmission for the cellular users when the idle D2D users are the potential eavesdroppers. We aim to design secure beamforming schemes to maximize the D2D users data rate while guaranteeing the secrecy rate requirements of the cellular users and the minimum required amounts of power transferred to the idle D2D users. To solve this non-convex problem, a semi-definite programming relaxation(SDR) approach is adopted to obtain the optimal solution. Furthermore, we propose two suboptimal secure beamforming schemes with low computational complexity for providing secure communication and efficient energy transfer. Simulation results demonstrate the superiority of our proposed scheme.
基金supported in part by Important National Science and Technology Specific Projects (Grants Nos. 2011 ZX 0300300104, 2012ZX03003012)Fundamental Research Funds for Central Universities (Grant Nos. 72125377)
文摘Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(No.61701201)the Natural Science Foundation of Jiangsu Province(No.BK20170758,BK20170757)+1 种基金the Natural Science Foundation for colleges and universities of Jiangsu Province(No.17KJB510011)Project of Key Laboratory of Wireless Communications of Jiangsu Province
文摘This paper investigates the device-to-device(D2D) communication underlaying cellular network assisted by a two-way decode-and-forward relay node. We assume the base station(BS) is equipped with M-antenna and serves its own cellular user while the D2D users communicate via a two-way decode-and-forward relay node. Both beamforming(BF) and interference cancellation(IC) strategies at the BS are considered to improve the performance for the cellular link and D2D link, respectively. We first analyze the received signal-to-interference-plus-noise for the cellular link under BF and IC strategies and then derive the exact closed-form expressions for the cellular link. Asymmetric and symmetric cases are discussed for various locations of each user. Finally, the approximations for high signal-to-noise regime are also presented. Numerical results demonstrate the accuracy of the analytical and asymptotic results.
基金supported by National Natural Science Foundation of China (61671080)
文摘By reusing the spectrum of a cellular network, device-to-device(D2D) communications is known to greatly improve the spectral efficiency bypassing the base station(BS) of the cellular network. Antenna selection is the most cost efficient scheme for interference management, which is crucial to D2D systems. This paper investigates the achievable rate performance of the D2D communication underlaying the cellular network where a multiple-antenna base station with antenna selection scheme is deployed. We derive an exact closed-form expression of the ergodic achievable rate. Also, using Jensen's inequality, two pairs of upper and lower bounds of the rate are derived and we validate the tightness of the two sets of bounds. Based on the bounds obtained, we analyze the ergodic achievable rate in noise-limited scenario, interference-limited high SNR scenario and larger-scale antenna systems. Our analysis shows that the presence of D2D users could be counter-productive if the SNR at cellular UE is high. Further analysis shows that the relationship between the ergodic rate and the number of antennas it positive, but keeps decreasing as the antenna number increasing. These show the inefficiency of antenna selection in D2D interference management.