Na3V2(PO4)3 (NVP)作为一种多正离子正极材料,在储能领域展现出巨大的潜力。然而,由于其内在导电性差和严重的结构退化,其应用受到了限制。在本研究中,我们采用球磨和煅烧技术的协同混合,制造出了一种Zn/Si双掺杂NVP正极材料(Na3V1.96Zn...Na3V2(PO4)3 (NVP)作为一种多正离子正极材料,在储能领域展现出巨大的潜力。然而,由于其内在导电性差和严重的结构退化,其应用受到了限制。在本研究中,我们采用球磨和煅烧技术的协同混合,制造出了一种Zn/Si双掺杂NVP正极材料(Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C)。此外,这种材料的表面还通过湿法工艺附着了一层热稳定的Al(PO3)3层。多孔Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3正极表现出卓越的稳定性,即使在5C的倍率下循环1000次,容量仍能保持90.8%。此外,在10 C和20 C的较高倍率下,正极的初始容量分别达到94.1 mAh·g−1和84.89 mAh·g−1,而在2000次循环后,其容量分别保持在86.19 mAh·g−1和76.54 mAh·g−1。通过Zn/Si共掺杂显著提高了电池的低倍率性能,并且通过Al(PO3)3改性显著提高了电池的高倍率性能。多孔Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3材料表现出较强的倍率性能和显著的循环稳定性,突出了其在高性能储能应用方面的巨大潜力。因此,本研究提出了一种通过表面改性和双掺杂技术来提高电化学性能的特殊方法。Na3V2(PO4)3 (NVP) demonstrates great potential as a polyanionic cathode material in the field of energy storage. However, its application is constrained by its poor intrinsic conductivity and severe structural degradation. In this study, we fabricate a Zn/Si-dual-doped NVP cathode material (Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C) employing a synergistic blend of ball milling and calcination techniques. Additionally, the surface of this material is adhered with a heat-stabilized Al(PO3)3 layer through a wet process. The porous Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3 cathode exhibits exceptional stability, retaining a capacity of 90.8% even after 1000 cycles at 5C. Moreover, at the higher rates of 10 C and 20 C, the cathode achieves initial capacities of 94.1 and 84.89 mAh∙g−1, respectively, while maintaining 86.19 and 76.54 mAh∙g−1 after 2000 cycles. The incorporation of Zn/Si co-doping significantly enhances the battery’s low-rate performance, while the modification with Al(PO3)3 conspicuously improves its high-rate performance. The porous Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3 material exhibits enhanced rate performance and remarkable cycling stability, highlighting its immense potential for high-performance energy storage applications. Thus, this research presents a special approach to enhancing electrochemical performance through surface modification and dual doping techniques.展开更多
文摘Na3V2(PO4)3 (NVP)作为一种多正离子正极材料,在储能领域展现出巨大的潜力。然而,由于其内在导电性差和严重的结构退化,其应用受到了限制。在本研究中,我们采用球磨和煅烧技术的协同混合,制造出了一种Zn/Si双掺杂NVP正极材料(Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C)。此外,这种材料的表面还通过湿法工艺附着了一层热稳定的Al(PO3)3层。多孔Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3正极表现出卓越的稳定性,即使在5C的倍率下循环1000次,容量仍能保持90.8%。此外,在10 C和20 C的较高倍率下,正极的初始容量分别达到94.1 mAh·g−1和84.89 mAh·g−1,而在2000次循环后,其容量分别保持在86.19 mAh·g−1和76.54 mAh·g−1。通过Zn/Si共掺杂显著提高了电池的低倍率性能,并且通过Al(PO3)3改性显著提高了电池的高倍率性能。多孔Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3材料表现出较强的倍率性能和显著的循环稳定性,突出了其在高性能储能应用方面的巨大潜力。因此,本研究提出了一种通过表面改性和双掺杂技术来提高电化学性能的特殊方法。Na3V2(PO4)3 (NVP) demonstrates great potential as a polyanionic cathode material in the field of energy storage. However, its application is constrained by its poor intrinsic conductivity and severe structural degradation. In this study, we fabricate a Zn/Si-dual-doped NVP cathode material (Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C) employing a synergistic blend of ball milling and calcination techniques. Additionally, the surface of this material is adhered with a heat-stabilized Al(PO3)3 layer through a wet process. The porous Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3 cathode exhibits exceptional stability, retaining a capacity of 90.8% even after 1000 cycles at 5C. Moreover, at the higher rates of 10 C and 20 C, the cathode achieves initial capacities of 94.1 and 84.89 mAh∙g−1, respectively, while maintaining 86.19 and 76.54 mAh∙g−1 after 2000 cycles. The incorporation of Zn/Si co-doping significantly enhances the battery’s low-rate performance, while the modification with Al(PO3)3 conspicuously improves its high-rate performance. The porous Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3 material exhibits enhanced rate performance and remarkable cycling stability, highlighting its immense potential for high-performance energy storage applications. Thus, this research presents a special approach to enhancing electrochemical performance through surface modification and dual doping techniques.