Er^3 +/Yb^3 + phosphate glasses were fabricated. According to McCumber theory, the stimulated emission cross-section of Er^3+ ions at 1533 nm was calculated on the basis of absorption spectrum, and 0.84 × 10^-...Er^3 +/Yb^3 + phosphate glasses were fabricated. According to McCumber theory, the stimulated emission cross-section of Er^3+ ions at 1533 nm was calculated on the basis of absorption spectrum, and 0.84 × 10^-20 cm^2 is derived, the fluorescence lifetime of ^4I13/2 level is 8.5 ms. An Er^3+/Yb^3+ co-doped phosphate glass CW laser pumped by LD was demonstrated at room temperature. The maximum output power is 80 mW and slope efficiency is 16.5%.展开更多
yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30...yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.展开更多
The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-...The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.展开更多
Er3+-Yb3+ co-doped fiber of 2 m long is used as the laser gain medium. Two fiber lasers with different structures have been set up, one is the line cavity fiber laser with the dielectric mirror being replaced by an al...Er3+-Yb3+ co-doped fiber of 2 m long is used as the laser gain medium. Two fiber lasers with different structures have been set up, one is the line cavity fiber laser with the dielectric mirror being replaced by an all-fiber reflecting mirror,the other is the ring cavity all-fiber laser. Both set-ups have achieved lasing operation at the wavelength of 1.53 μm. Pumped by the 1 064 nm light from all-solid-state Nd ∶YAG laser, the two fiber lasers at 1 530 nm are operational. Their output powers are 7.8 mW and 2 mW with 130 mW and 160 mW pump powers.展开更多
Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are meas...Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are measured, and the mechanisms of energy transfer among Yb^3+ Er^3+ and Tm^3+ ions are discussed. The results show that there is an unexpected wavelength at 900-nm emission from Yb^3+ Stark splitting levels to pump Tm^3+ ions and there exists an optimum pump power. The concentration of the Tm^3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the yb^3+:Er^3+:Tm^3+ co-doped borosilicate glasses.展开更多
yb^3+-Er^3+ co-doped Na20-Al2O3-SiO2-P2O5 glasses with different SiO2 content have been fabricated and characterized. Absorption and emission spectra were measured. Judd-Ofelt theory and McCumber theory are performe...yb^3+-Er^3+ co-doped Na20-Al2O3-SiO2-P2O5 glasses with different SiO2 content have been fabricated and characterized. Absorption and emission spectra were measured. Judd-Ofelt theory and McCumber theory are performed to analyze the measured absorption spectra. The Judd-Ofelt intensity parameters Ω4 and Ω6 decrease with increasing SiO2 content. The emission cross-section of Er^3+ decreases from 0.82×10^-20cm^2 to 0.76 × 10^-20cm^2 as the SiO2 content varies from 0 to 20 mol%.展开更多
Phosphate glass samples with various Yb2O3 and Er2O3 contents were synthesized by the conventional melt quenching technique and characterized by X-ray diffraction, IR absorption spectroscopy and Raman scattering spect...Phosphate glass samples with various Yb2O3 and Er2O3 contents were synthesized by the conventional melt quenching technique and characterized by X-ray diffraction, IR absorption spectroscopy and Raman scattering spectroscopy. The absorption, emission spectra and fluorescence decay studies were carried out both at low and room temperatures. Results showed the existence of several sites occupied by the rare earth ions in the phosphate glass. Up-conversion and cooperative fluorescence were also discussed.展开更多
The Er3+/yb3+ co-doped phosphate (EYDP) glass waveguides operated at 1539 nm have been manufactured by using the implantation technique of carbon ions under the condition of 6.0 MeV energy and 5.0 × 10^13 ion...The Er3+/yb3+ co-doped phosphate (EYDP) glass waveguides operated at 1539 nm have been manufactured by using the implantation technique of carbon ions under the condition of 6.0 MeV energy and 5.0 × 10^13 ions/cm2 fluence in this work. The ion implantation process was computed by means of the stopping and range of ions in matter. The dark-mode spectrum at 1539 nm of the waveguide was recorded by the method of the prism coupling measurement. The microscopic image of the fabricated structure was photographed by an optical microscope. It is the first step for the application of the waveguides on the base of EYDP glasses in optical- integrated photonic devices at near-infrared band.展开更多
A new way to improve the 1.53μm emission in Er3+/Yb3+ co-doped multicomponent phosphate glass was demonstrated by introducing silver nanoparticles (NPs) in rare-earth doped glass. The existence of Ag NPs was conf...A new way to improve the 1.53μm emission in Er3+/Yb3+ co-doped multicomponent phosphate glass was demonstrated by introducing silver nanoparticles (NPs) in rare-earth doped glass. The existence of Ag NPs was confirmed by absorption spectra and transmission electron microscopy (TEM) measurements. The homogeneous distribution of silver NPs could be observed by the TEM images. UV-Vis-NIR absorption spectra revealed that the surface plasmon band was centered at about 420 nm. The photoluminescence spectra of glass samples were used to investigate the effect of silver NPs on the fluorescence properties of Er3+. Efficient 1.53μm emis-sion was obtained in prepared samples when pumped at 980 nm laser diode (LD). The 1.53μm emission intensity could be enhanced 87% by doping 2 mol.% AgCl due to the increased localized field effect in the vicinity of NPs and the possible energy transfer from silver NPs to Er3+ions. Our present work may point out one way to enhance the gain coefficient of Er3+/Yb3+ co-doped glass fiber.展开更多
A detailed study of the fluorescence emission properties and energy transfer mechanism in Er^(3+)/Tm^(3+) co-doped lead silicate glasses was reported. Enhanced near infrared 1.8 μm and visible up-conversion emi...A detailed study of the fluorescence emission properties and energy transfer mechanism in Er^(3+)/Tm^(3+) co-doped lead silicate glasses was reported. Enhanced near infrared 1.8 μm and visible up-conversion emissions were investigated under 808 and 980 nm excitations, respectively. The energy transfer mechanism between Er^(3+) and Tm^(3+) was analyzed according to the absorption spectra, the emission spectra and the level structures of Er^(3+) and Tm^(3+). The energy transfer efficiency between Er^(3+) and Tm^(3+) reached 68.1% in the Er^(3+)/Tm^(3+) co-doped lead silicate glasses when pumped by 808 nm laser diode. Based on the absorption spectra, the Judd-Ofelt parameters, spontaneous emission probability, absorption and emission cross sections, gain coefficients were calculated and analyzed. It was found that the calculated emission cross section and the maximum gain coefficient around 1.8 μm were 4.9×10^(–21)cm^2 and 1.12 cm^(–1), respectively. These results indicated that the Er^(3+)/Tm^(3+) co-doped lead-silicate glasses had potential application in near infrared lasers.展开更多
文摘Er^3 +/Yb^3 + phosphate glasses were fabricated. According to McCumber theory, the stimulated emission cross-section of Er^3+ ions at 1533 nm was calculated on the basis of absorption spectrum, and 0.84 × 10^-20 cm^2 is derived, the fluorescence lifetime of ^4I13/2 level is 8.5 ms. An Er^3+/Yb^3+ co-doped phosphate glass CW laser pumped by LD was demonstrated at room temperature. The maximum output power is 80 mW and slope efficiency is 16.5%.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015 )the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61265004,51272097,and 11204113)the Nature and Science Fund from Yunnan Province Ministry of Education,China(Grant No.2011C13211708)
文摘The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.
文摘Er3+-Yb3+ co-doped fiber of 2 m long is used as the laser gain medium. Two fiber lasers with different structures have been set up, one is the line cavity fiber laser with the dielectric mirror being replaced by an all-fiber reflecting mirror,the other is the ring cavity all-fiber laser. Both set-ups have achieved lasing operation at the wavelength of 1.53 μm. Pumped by the 1 064 nm light from all-solid-state Nd ∶YAG laser, the two fiber lasers at 1 530 nm are operational. Their output powers are 7.8 mW and 2 mW with 130 mW and 160 mW pump powers.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015)the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘Yb^3+:Er^3+:Tm^3+co-doped borosilicate glasses are prepared. Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared, which are excited by a 978-nm laser diode, are measured, and the mechanisms of energy transfer among Yb^3+ Er^3+ and Tm^3+ ions are discussed. The results show that there is an unexpected wavelength at 900-nm emission from Yb^3+ Stark splitting levels to pump Tm^3+ ions and there exists an optimum pump power. The concentration of the Tm^3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the yb^3+:Er^3+:Tm^3+ co-doped borosilicate glasses.
基金Funded by the International Cooperation Project of Shanghai Municipal Science and Technology Commission (No.05S207103)
文摘yb^3+-Er^3+ co-doped Na20-Al2O3-SiO2-P2O5 glasses with different SiO2 content have been fabricated and characterized. Absorption and emission spectra were measured. Judd-Ofelt theory and McCumber theory are performed to analyze the measured absorption spectra. The Judd-Ofelt intensity parameters Ω4 and Ω6 decrease with increasing SiO2 content. The emission cross-section of Er^3+ decreases from 0.82×10^-20cm^2 to 0.76 × 10^-20cm^2 as the SiO2 content varies from 0 to 20 mol%.
文摘Phosphate glass samples with various Yb2O3 and Er2O3 contents were synthesized by the conventional melt quenching technique and characterized by X-ray diffraction, IR absorption spectroscopy and Raman scattering spectroscopy. The absorption, emission spectra and fluorescence decay studies were carried out both at low and room temperatures. Results showed the existence of several sites occupied by the rare earth ions in the phosphate glass. Up-conversion and cooperative fluorescence were also discussed.
文摘The Er3+/yb3+ co-doped phosphate (EYDP) glass waveguides operated at 1539 nm have been manufactured by using the implantation technique of carbon ions under the condition of 6.0 MeV energy and 5.0 × 10^13 ions/cm2 fluence in this work. The ion implantation process was computed by means of the stopping and range of ions in matter. The dark-mode spectrum at 1539 nm of the waveguide was recorded by the method of the prism coupling measurement. The microscopic image of the fabricated structure was photographed by an optical microscope. It is the first step for the application of the waveguides on the base of EYDP glasses in optical- integrated photonic devices at near-infrared band.
基金Project supported by the High-level Personnel Special Support Program of Guangdong Province(2014TX01C087)China National Funds for Distinguished Young Scientists(61325024)+2 种基金Fundamental Research Funds for the Central Universities(2015ZP019)the Science and Technology Project of Guangdong(2015B090926010)Hi-tech Research and Development Program of China(2013AA031502)
文摘A new way to improve the 1.53μm emission in Er3+/Yb3+ co-doped multicomponent phosphate glass was demonstrated by introducing silver nanoparticles (NPs) in rare-earth doped glass. The existence of Ag NPs was confirmed by absorption spectra and transmission electron microscopy (TEM) measurements. The homogeneous distribution of silver NPs could be observed by the TEM images. UV-Vis-NIR absorption spectra revealed that the surface plasmon band was centered at about 420 nm. The photoluminescence spectra of glass samples were used to investigate the effect of silver NPs on the fluorescence properties of Er3+. Efficient 1.53μm emis-sion was obtained in prepared samples when pumped at 980 nm laser diode (LD). The 1.53μm emission intensity could be enhanced 87% by doping 2 mol.% AgCl due to the increased localized field effect in the vicinity of NPs and the possible energy transfer from silver NPs to Er3+ions. Our present work may point out one way to enhance the gain coefficient of Er3+/Yb3+ co-doped glass fiber.
基金Project supported by the China National Funds for Distinguished Young Scientists(61325024)Hi-tech Research and Development Program of China(National 863 Project:2014AA041902)+2 种基金National Nature Science Foundation of China(11174085,51132004,51302086)the Fund of Guangdong Province Cooperation of Producing,Studying and Researching(2012B091100140)Guangdong Natural Science Foundation(S2011030001349)
文摘A detailed study of the fluorescence emission properties and energy transfer mechanism in Er^(3+)/Tm^(3+) co-doped lead silicate glasses was reported. Enhanced near infrared 1.8 μm and visible up-conversion emissions were investigated under 808 and 980 nm excitations, respectively. The energy transfer mechanism between Er^(3+) and Tm^(3+) was analyzed according to the absorption spectra, the emission spectra and the level structures of Er^(3+) and Tm^(3+). The energy transfer efficiency between Er^(3+) and Tm^(3+) reached 68.1% in the Er^(3+)/Tm^(3+) co-doped lead silicate glasses when pumped by 808 nm laser diode. Based on the absorption spectra, the Judd-Ofelt parameters, spontaneous emission probability, absorption and emission cross sections, gain coefficients were calculated and analyzed. It was found that the calculated emission cross section and the maximum gain coefficient around 1.8 μm were 4.9×10^(–21)cm^2 and 1.12 cm^(–1), respectively. These results indicated that the Er^(3+)/Tm^(3+) co-doped lead-silicate glasses had potential application in near infrared lasers.