Fracture prediction is a technical issue in the field of petroleum exploration and production worldwide.Although there are many approaches to predict the distribution of cracks underground,these approaches have some l...Fracture prediction is a technical issue in the field of petroleum exploration and production worldwide.Although there are many approaches to predict the distribution of cracks underground,these approaches have some limitations.To resolve these issues,we ascertained the relation between numerical simulations of tectonic stress and the predicted distribution of fractures from the perspective of geologic genesis,based on the characteristics of the shale reservoir in the Longmaxi Formation in Dingshan;the features of fracture development in this reservoir were considered.3 D finite element method(FEM)was applied in combination with rock mechanical parameters derived from the acoustic emissions.The paleotectonic stress field of the crack formation period was simulated for the Longmaxi Formation in the Dingshan area.The splitting factor in the study area was calculated based on the rock breaking criterion.The coefficient of fracture development was selected as the quantitative prediction classification criteria for the cracks.The results show that a higher coefficient of fracture development indicates a greater degree of fracture development.On the basis of the fracture development coefficient classification,a favorable area was identified for the development of fracture prediction in the study area.The prediction results indicate that the south of the Dingshan area and the DY3 well of the central region are favorable zones for fracture development.展开更多
In the hot forming of Mn18Cr18N steel, such problems as easy cracking, difficult controlling of forming paramenters often occur. In this paper,the variation rule of the plasticity of the steel, the starting mechanis...In the hot forming of Mn18Cr18N steel, such problems as easy cracking, difficult controlling of forming paramenters often occur. In this paper,the variation rule of the plasticity of the steel, the starting mechanism of micro-crack and its generating characteristics were studied with the combination of thermodynamic simulation test, micro-simulation and FEM, the related data of microstructure change and hot forming parameters were produced. The hot forming process of 600MW generator retaining ring was analyzed as an example.展开更多
Finite element simulations are carried out to examine the mechanical behavior of the metallic hollow sphere (MHS) material during their large plastic deformation and to estimate the energy absorbing capacity of thes...Finite element simulations are carried out to examine the mechanical behavior of the metallic hollow sphere (MHS) material during their large plastic deformation and to estimate the energy absorbing capacity of these materials under uniaxial compression. A simplified model is proposed from experimental observations to describe the connection between the neighboring spheres, which greatly improves the computation efficiency. The effects of the governing physical and geometrical parameters are evaluated; whilst a special attention is paid to the plateau stress, which is directly related to the energy absorbing capacity. Finally, the empirical functions of the relative material density are proposed for the elastic modulus, yield strength and plateau stress for FCC packing arrangement of hollow spheres, showing a good agreement with the experimental results obtained in our previous study.展开更多
A modem design method, in which traditional design formulas are conjoined with numerical simulation and optimization, is successfully used to design the out-size extrusion flame precisely so that the press cost can be...A modem design method, in which traditional design formulas are conjoined with numerical simulation and optimization, is successfully used to design the out-size extrusion flame precisely so that the press cost can be saved. A new technology used for decompressing by a multi-steps dynamical mode is put forward, which makes it possible to decompress the large flow-volume high-pressure oil in the main cylinders. In addition, a method for realizing the fixed mandrel process by hydraulic support is proposed and its control equation is established. Pre-tightening frame tests are carried out by over-operating pressure on 100 MN aluminium extrusion press with oil-driven double action, which is developed based on the above key techniques and is the largest press so far in the world, and the results show that the frame structure designed is reasonable and reliable, and the modem design method used is an useful tool for designing large and out-size heavy plastic forming machinery. The results of decompressing curve in main cylinder and noise inspection indicate that multi-steps dynamical mode for decompressing the large flow-volume high pressure oil is valid and reliable. Meanwhile, the fixed mandrel process is well realized based on the control equation. These key techniques have been used in the development of 125 MN aluminium extrusion press with oil-driven double action.展开更多
基金supported by the Open Fund (PLN 201718) of State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum University and the Open Fund (SEC-2018-04) of Collaborative Innovation Center of Shale Gas Resources and EnvironmentSouthwest Petroleum University and the National Science and Technology Major Project of China (2017ZX05036003-003)
文摘Fracture prediction is a technical issue in the field of petroleum exploration and production worldwide.Although there are many approaches to predict the distribution of cracks underground,these approaches have some limitations.To resolve these issues,we ascertained the relation between numerical simulations of tectonic stress and the predicted distribution of fractures from the perspective of geologic genesis,based on the characteristics of the shale reservoir in the Longmaxi Formation in Dingshan;the features of fracture development in this reservoir were considered.3 D finite element method(FEM)was applied in combination with rock mechanical parameters derived from the acoustic emissions.The paleotectonic stress field of the crack formation period was simulated for the Longmaxi Formation in the Dingshan area.The splitting factor in the study area was calculated based on the rock breaking criterion.The coefficient of fracture development was selected as the quantitative prediction classification criteria for the cracks.The results show that a higher coefficient of fracture development indicates a greater degree of fracture development.On the basis of the fracture development coefficient classification,a favorable area was identified for the development of fracture prediction in the study area.The prediction results indicate that the south of the Dingshan area and the DY3 well of the central region are favorable zones for fracture development.
文摘In the hot forming of Mn18Cr18N steel, such problems as easy cracking, difficult controlling of forming paramenters often occur. In this paper,the variation rule of the plasticity of the steel, the starting mechanism of micro-crack and its generating characteristics were studied with the combination of thermodynamic simulation test, micro-simulation and FEM, the related data of microstructure change and hot forming parameters were produced. The hot forming process of 600MW generator retaining ring was analyzed as an example.
基金The project supported by the Hong Kong Research Grant Council(RGC)(HKUST 6079/00E)the National Natural Science Foundation of China(10532020).
文摘Finite element simulations are carried out to examine the mechanical behavior of the metallic hollow sphere (MHS) material during their large plastic deformation and to estimate the energy absorbing capacity of these materials under uniaxial compression. A simplified model is proposed from experimental observations to describe the connection between the neighboring spheres, which greatly improves the computation efficiency. The effects of the governing physical and geometrical parameters are evaluated; whilst a special attention is paid to the plateau stress, which is directly related to the energy absorbing capacity. Finally, the empirical functions of the relative material density are proposed for the elastic modulus, yield strength and plateau stress for FCC packing arrangement of hollow spheres, showing a good agreement with the experimental results obtained in our previous study.
基金This project is supported by National Science Foundation of China for Distinguished Young Scholars (No. 50225518)Foundation of China for Key New Product (No. 2004ED850025)Post-Doctoral Foundation of China Heavy Machinery Research Institute (No. K055412).
文摘A modem design method, in which traditional design formulas are conjoined with numerical simulation and optimization, is successfully used to design the out-size extrusion flame precisely so that the press cost can be saved. A new technology used for decompressing by a multi-steps dynamical mode is put forward, which makes it possible to decompress the large flow-volume high-pressure oil in the main cylinders. In addition, a method for realizing the fixed mandrel process by hydraulic support is proposed and its control equation is established. Pre-tightening frame tests are carried out by over-operating pressure on 100 MN aluminium extrusion press with oil-driven double action, which is developed based on the above key techniques and is the largest press so far in the world, and the results show that the frame structure designed is reasonable and reliable, and the modem design method used is an useful tool for designing large and out-size heavy plastic forming machinery. The results of decompressing curve in main cylinder and noise inspection indicate that multi-steps dynamical mode for decompressing the large flow-volume high pressure oil is valid and reliable. Meanwhile, the fixed mandrel process is well realized based on the control equation. These key techniques have been used in the development of 125 MN aluminium extrusion press with oil-driven double action.