期刊文献+
共找到211,341篇文章
< 1 2 250 >
每页显示 20 50 100
Finite Time Domain Dynamics of Scalar Fields
1
作者 Emmanouil George Thrapsaniotis 《Journal of Applied Mathematics and Physics》 2025年第2期454-464,共11页
In the present paper, we study the finite time domain dynamics of a scalar field interacting with external sources. We expand both the scalar field and the corresponding Hamiltonian in annihilation and creation operat... In the present paper, we study the finite time domain dynamics of a scalar field interacting with external sources. We expand both the scalar field and the corresponding Hamiltonian in annihilation and creation operators and evaluate the relevant path integral. So, we get the Green function within a finite time interval. We apply the solution to the relevant Cauchy problem and further, we study the dynamics of scalar fields coupled with electromagnetic fields via perturbative methods. 展开更多
关键词 Scalar fields Finite Time Evolution Electromagnetic field Perturbative Methods
在线阅读 下载PDF
Confined seepage analysis of saturated soils using fuzzy fields
2
作者 Nataly A.Manque Kok-Kwang Phoon +2 位作者 Yong Liu Marcos A.Valdebenito Matthias G.R.Faes 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1302-1320,共19页
Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope... Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope with the uncertainty associated with the parameters such as the hydraulic conductivity in the horizontal and vertical directions that drive this phenomenon.However,at the same time,the data on horizontal and vertical hydraulic conductivities are typically scarce in spatial resolution.In this context,so-called non-traditional approaches for uncertainty quantification(such as intervals and fuzzy variables)offer an interesting alternative to classical probabilistic methods,since they have been shown to be quite effective when limited information on the governing parameters of a phenomenon is available.Therefore,the main contribution of this study is the development of a framework for conducting seepage analysis in saturated soils,where uncertainty associated with hydraulic conductivity is characterized using fuzzy fields.This method to characterize uncertainty extends interval fields towards the domain of fuzzy numbers.In fact,it is illustrated that fuzzy fields are an effective tool for capturing uncertainties with a spatial component,since they allow one to account for available physical measurements.A case study in confined saturated soil shows that with the proposed framework,it is possible to quantify the uncertainty associated with seepage flow,exit gradient,and uplift force effectively. 展开更多
关键词 Fuzzy fields Interval fields Seepage analysis Hydraulic conductivity Spatial uncertainty
在线阅读 下载PDF
Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area−Evidence from heat flow determination in the Archean of D01 well
3
作者 Ya-hui Yao Xiao-feng Jia +5 位作者 Sheng-tao Li Jun-yan Cui Hong Xiang Dong-dong Yue Qiu-xia Zhang Zhao-long Feng 《Journal of Groundwater Science and Engineering》 2025年第1期22-33,共12页
The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary ... The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary cap.Due to the limited depth of borehole exploration,heat flow measurements and analyses of the Archean crystalline base-ment in the study area are rare.Further investigation of the heat flow and temperature field characteristics within the Archean crystalline basement beneath the karst geothermal reservoir is necessary to understand the vertical distribution of heat flow and improve the geothermal genetic mechanism in the area.The D01 deep geothermal scientific drilling param-eter well was implemented in the Niutuozhen geothermal field of Xiong'an New Area.The well exposed the entire Gaoyuzhaung Formation karst geotheremal reservoir of the Jixian system and drilled 1,723.67 m into the Archean crys-talline basement,providing the necessary conditions for determining its heat flow.This study involved borehole tempera-ture measurements and thermophysical property testing of core samples from the D01 well to analyze the vertical distri-bution of heat flow.The findings revealed distinct segmentation in the geothermal gradient and rock thermophysical prop-erties.The geothermal reservoir of Gaoyuzhuang Formation is dominated by convection,with significant temperature inversions corresponding to karst fracture developments.In contrast,the Archean crystalline basement exhibits conduc-tive heat transfer.After 233 days of static equilibrium,the average geothermal gradients of the Gaoyuzhuang Formation and the Archean crystalline basement were determined to be 1.5°C/km and 18.3°C/km,respectively.These values adjusted to-0.8°C/km and 18.2°C/km after 551 days,with the longer static time curve approaching steady-state condi-tions.The average thermal conductivity of dolomite in Gaoyuzhuang Formation was measured as 4.37±0.82 W/(K·m),3 and that of Archean gneiss as 2.41±0.40 W/(K·m).The average radioactive heat generation rate were 0.30±0.32μW/m 3 for dolomite and 1.32±0.69μW/m for gneiss.Using the temperature curve after 551 days and thermal conductivity data,the Archean heat flow at the D01 well was calculated as(43.9±7.0)mW/m2,While the heat flow for the Neogene sedi-mentary cap was estimated at 88.6mW/m2.The heat flow of Neogene sedimentary caprock is significantly higher than 2 that of Archean crystalline basement at the D01 well,with an excess of 44.7 mW/m accounting for approximately 50%of the total heat flow in the Neogene sedimentary caprock.This is primarily attributed to lateral thermal convection within the high-porosity and high-permeability karst dolomite layer,and vertical thermal convection facilitated by the Niudong fault,which collectively contribute to the heat supply of the Neogene sedimentary caprock.Thermal convection in karst fissure and fault zone contribute approximately 50%of the heat flow in the Neogene sedimentary caprock.This study quantitatively revealed the vertical distribution of heat flow,providing empirical evidence for the genetic mechanism of the convection-conduction geothermal system in sedimentary basins. 展开更多
关键词 Heat flow vertical difference Archean crystalline basement Thermal conductivity Niutuozhen geothermal field Present-day temperature field Geothermal genetic mechanism D01 well
在线阅读 下载PDF
Numerical design of transverse gradient coil with transformed magnetic gradient field over an effective imaging area
4
作者 Chaoqun Niu Hongyi Qu 《Magnetic Resonance Letters》 2025年第1期40-51,共12页
Gradient coil is an essential component of a magnetic resonance imaging(MRI)scanner.To achieve high spatial resolution and imaging speed,a high-efficiency gradient coil with high slew rate is required.In consideration... Gradient coil is an essential component of a magnetic resonance imaging(MRI)scanner.To achieve high spatial resolution and imaging speed,a high-efficiency gradient coil with high slew rate is required.In consideration of the safety and comfort of the patient,the mechanical stability,acoustic noise and peripheral nerve stimulation(PNS)are also need to be concerned for practical use.In our previous work,a high-efficiency whole-body gradient coil set with a hybrid cylindrical-planar structure has been presented,which offers significantly improved coil performances.In this work,we propose to design this transverse gradient coil system with transformed magnetic gradient fields.By shifting up the zero point of gradient fields,the designed new Y-gradient coil could provide enhanced electromagnetic performances.With more uniform coil winding arrangement,the net torque of the new coil is significantly reduced and the generated sound pressure level(SPL)is lower at most tested frequency bands.On the other hand,the new transverse gradient coil designed with rotated magnetic gradient fields produces considerably reduced electric field in the human body,which is important for the use of rapid MR sequences.It's demonstrated that a safer and patient-friendly design could be obtained by using transformed magnetic gradient fields,which is critical for practical use. 展开更多
关键词 Magnetic resonance imaging(MRI) Gradient coil Transformed magnetic gradient field Acoustic noise Induced electric field
在线阅读 下载PDF
Influence of Magnetic Field and Temperature on the Transient Density and Voltage in a Radial Junction Solar Cell in Dynamic Regime under Pulsed Multispectral Illumination
5
作者 Moussa Ouedraogo Nazé Yacouba Traore +2 位作者 Alain Diasso Raguilignaba Sam François Zougmore 《Open Journal of Applied Sciences》 2025年第1期42-52,共11页
This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junctio... This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junction solar cells represent a major advancement in photovoltaic technologies, as they optimize light absorption and charge collection efficiency. The focus is on the impact of the magnetic field and temperature on the decay of transient voltage, which provides crucial information on recombination processes and the lifetime of minority carriers. The results reveal that the magnetic field tends to increase the transient voltage by directly affecting the transient electron density. Indeed, for B > 7 × 10−5 T, the magnetic field prolongs the relaxation time by increasing the transient voltage amplitude. Additionally, rising temperatures accelerate (ranging from 290 K to 450 K) recombination processes, thereby reducing the transient voltage, although this effect is moderated by the presence of a magnetic field. The study highlights the complex interaction between magnetic field and temperature, with significant impacts on the transient behaviour. 展开更多
关键词 ELECTRONS Radial Junction Transient Voltage Magnetic field Operating Temperature
在线阅读 下载PDF
Probabilistic Site Investigation Optimization of Gassy Soils Based on Conditional Random Field and Monte Carlo Simulation
6
作者 Shaolin Ding 《World Journal of Engineering and Technology》 2025年第1期1-11,共11页
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s... Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study. 展开更多
关键词 Gassy Soils Site Investigation UNCERTAINTY Conditional Random field Monte Carlo Simulation
在线阅读 下载PDF
Mantle Field Radiation for Hodgkin’s Lymphoma: An Effective Treatment, But at What Cost?
7
作者 Colin Campbell Terence K. Gray 《Pain Studies and Treatment》 2025年第1期1-7,共7页
This retrospective case study investigates the clinical presentation of a 53-year-old female who underwent mantle field radiotherapy roughly 26 years ago. This patient presents with diffuse muscle atrophy and weakness... This retrospective case study investigates the clinical presentation of a 53-year-old female who underwent mantle field radiotherapy roughly 26 years ago. This patient presents with diffuse muscle atrophy and weakness in the cervical musculature, as well as sensory deficits in the upper extremities. We sought to compare our patient’s symptoms with other patients who had been formally diagnosed with Dropped Head Syndrome (DHS) by reviewing the existing literature. We found that the clinical presentation under investigation was consistent with other patients who had received radiotherapy for Hodgkins’s disease and were then diagnosed with DHS. Electromyography (EMG), nerve conduction studies, and a cervical MRI were unable to identify a separate neurological cause for the symptoms, but the MRI did confirm the presence of diffuse muscle atrophy in the cervical musculature. After reviewing the existing literature and imaging results, we compared our patient’s symptoms to those that define DHS, and both the time of onset, presenting symptoms, and progressing course are consistent with a diagnosis of Dropped Head Syndrome. 展开更多
关键词 Mantle field Radiotherapy Radiation Injury Dropped Head Syndrome Cervical Spine Weakness Cervical Extensor Muscle Weakness
在线阅读 下载PDF
Light-induced nuclear spin hyperpolarization at high magnetic fields
8
作者 Yi Ji Guangjin Hou 《Magnetic Resonance Letters》 2025年第1期79-80,共2页
A recent study demonstrated that solid-state photochemically induced dynamic nuclear polarization(photo-CIDNP)can achieve significant 1H NMR hyperpolarization at high magnetic fields(9.4 T and 21.1 T).This was accompl... A recent study demonstrated that solid-state photochemically induced dynamic nuclear polarization(photo-CIDNP)can achieve significant 1H NMR hyperpolarization at high magnetic fields(9.4 T and 21.1 T).This was accomplished using a specially designed donor-chromophore-acceptor(D-C-A)molecule,which exhibits an excited state electron-electron interaction that is finely tuned to match the proton Larmor frequency under high-field conditions[1]. 展开更多
关键词 MAGNETIC fieldS DONOR
在线阅读 下载PDF
Complex Field Theory: A Unifying Framework for Dark Matter and Dark Energy with the Material Universe
9
作者 Hossin Abdeldayem 《Journal of Modern Physics》 2025年第1期140-151,共12页
Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that e... Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics. 展开更多
关键词 Dark Energy Dark Matter Complex field Theory Entanglement Zero-Point Energy Particle-Wave Duality Gravity Unification of Coulomb’s and Newton’s Laws TACHYONS Spooky Action Effect
在线阅读 下载PDF
Dual-selective silver recovery strategy by simultaneous adsorption-reduction boosted by in-situ magnetic field
10
作者 Jianran Ren Zhiliang Zhu +4 位作者 Yanling Qiu Fei Yu Tao Zhou Jie Ma Jianfu Zhao 《Green Energy & Environment》 2025年第2期433-440,共8页
The mainstream silver recovery has problems such as resource waste,weak silver selectivity,and complicated operation.Here,self-propelled magnetic enhanced capture hydrogel(magnetic NbFeB/MXene/GO,MNMGH)was prepared by... The mainstream silver recovery has problems such as resource waste,weak silver selectivity,and complicated operation.Here,self-propelled magnetic enhanced capture hydrogel(magnetic NbFeB/MXene/GO,MNMGH)was prepared by self-crosslinking encapsulation method.MNMGH achieved high selectivity(K_(d)=23.31 mL/g)in the acidic range,and exhibited ultrahigh silver recovery capacity(1604.8 mg/g),which greatly improved by 66%with the assistance of in-situ magnetic field.The recovered silver crystals could be directly physically exfoliated,without acid/base additions.The selective sieving effect of adsorption,MNMGH preferentially adsorbed Ag(I),and then selectively reduced to Ag(0),realizing dual-selective recovery.The in-situ magnetic field enhanced selective adsorption by enhancing mass transfer,reactivity of oxygen-containing functional groups.Furthermore,density function theory simulations demonstrated that the in-situ magnetic field could lower the silver reduction reaction energy barrier to enhance the selective reduction.Three-drive synergy system(reduction drive,adsorption drive and magnetic drive)achieved ultrahigh silver recovery performance.This study pioneered an in-situ magnetic field assisted enhancement strategy for dual-selective(adsorption/reduction)recovery of precious metal silver,which provided new idea for low-carbon recovery of noble metal from industrial waste liquids. 展开更多
关键词 In-situ magnetic field Silver recovery Adsorption-reduction SELECTIVITY Physical separation
在线阅读 下载PDF
Evaluation of the satellite's wake effect on the electric field detector onboard the CSES-01 satellite
11
作者 JianPing Huang ZongYu Li +4 位作者 Zhong Li XingHong Zhu JunGang Lei YuanQing Miao WenJing Li 《Earth and Planetary Physics》 2025年第2期400-409,共10页
This study aimed to evaluate the wake effect on the electric field detector(EFD) onboard the China Seismo-Electromagnetic Satellite(CSES-01). Through a series of experiments and analyses, we confirmed that the disturb... This study aimed to evaluate the wake effect on the electric field detector(EFD) onboard the China Seismo-Electromagnetic Satellite(CSES-01). Through a series of experiments and analyses, we confirmed that the disturbance phenomenon from probe B of the EFD is not caused by the boom layout. To validate and determine whether it is influenced by the wake effect, we conducted two experiments. In the first experiment, the entire satellite platform underwent a 90° counterclockwise yaw maneuver to allow probe B to avoid the plasma wake region. We then verified whether the disturbance was improved. In the second experiment, the satellite platform performed a 180° counterclockwise yaw maneuver, positioning probe B on the ram side of the satellite and completely avoiding all satellite wakes. The plasma wake effect of the satellite did not significantly influence the spherical probes of the EFD because the measurement accuracy stayed relatively stable under the two experiments, despite the observed abnormalities in the operating state of spherical probe B. This consistency in performance is important for electric field detection missions because the spatial electric field vector data obtained from these probes continue to effectively reflect information on spatial electromagnetic disturbances. These two experimental results showed that probe B consistently exhibited data jump phenomena under various maneuver states, whereas probes A, C, and D did not display such phenomena in any maneuver state. 展开更多
关键词 CSES-01 PAYLOAD electric field detector satellite attitude data quality
在线阅读 下载PDF
Influence of surface contamination on electric field distribution of insulators
12
作者 Xingcai Li Yingge Liu Juan Wang 《Chinese Physics B》 2025年第3期367-379,共13页
Atmospheric particle adsorption on insulator surfaces,coupled with humid environments,significantly affects contamination flashover,necessitating a clear understanding of the electric field distribution on insulator s... Atmospheric particle adsorption on insulator surfaces,coupled with humid environments,significantly affects contamination flashover,necessitating a clear understanding of the electric field distribution on insulator surfaces with adsorbed particles.This is crucial for accurately assessing insulator safety and informing critical decision-making.Although previous research has demonstrated that particle arrangement significantly influences the electric field distribution around transmission lines,an in-depth analysis of its effects on insulator surfaces remains lacking.To address this gap,this study establishes a composite insulator model to examine how three types of spherical contamination layers affect the electric field distribution on insulator surfaces under varying environmental conditions.The results reveal that in dry environments,the electric field strength at the apex of single-particle contamination layers increases with the particle size and relative permittivity.For the double-particle contamination layers,the electric field intensity on the insulator surface decreases as the particle spacing increases,and larger particles are more likely to attract smaller charged particles.For triple-particle contamination layers arranged in a triangular pattern,the maximum surface field strength is nearly double that of the chain-arranged particles.Furthermore,within the chain-arranged triple-particle contamination layers,a large-small-large size arrangement has a more pronounced impact on the surface electric field than a small-large-small size arrangement.In humid environments,the surface electric field strength of insulators decreases with increasing contamination levels.These findings are of significant theoretical and practical importance for ensuring the safe operation of power systems. 展开更多
关键词 composite insulator electric field distribution CONTAMINATION humid environment arrangement pattern
在线阅读 下载PDF
Hazard Analysis of Dam Corridor Cracks Based on Field Detection and Numerical Calculation
13
作者 Jiacheng Li Liangkun Gong +3 位作者 Yuxiang Li Jialiang Qian Weiyu Wu Weiran Lu 《Journal of World Architecture》 2025年第1期32-39,共8页
The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three... The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region. 展开更多
关键词 Gallery cracks field test Finite element calculation Hazard analysis
在线阅读 下载PDF
Neural-field-based image reconstruction for bioluminescence tomography
14
作者 Xuanxuan Zhang Xu Cao +2 位作者 Jiulou Zhang Lin Zhang Guanglei Zhang 《Journal of Innovative Optical Health Sciences》 2025年第1期165-179,共15页
Deep learning(DL)-based image reconstruction methods have garnered increasing interest in the last few years.Numerous studies demonstrate that DL-based reconstruction methods function admirably in optical tomographic ... Deep learning(DL)-based image reconstruction methods have garnered increasing interest in the last few years.Numerous studies demonstrate that DL-based reconstruction methods function admirably in optical tomographic imaging techniques,such as bioluminescence tomography(BLT).Nevertheless,nearly every existing DL-based method utilizes an explicit neural representation for the reconstruction problem,which either consumes much memory space or requires various complicated computations.In this paper,we present a neural field(NF)-based image reconstruction scheme for BLT that uses an implicit neural representation.The proposed NFbased method establishes a transformation between the coordinate of an arbitrary spatial point and the source value of the point with a relatively light-weight multilayer perceptron,which has remarkable computational efficiency.Another simple neural network composed of two fully connected layers and a 1D convolutional layer is used to generate the neural features.Results of simulations and experiments show that the proposed NF-based method has similar performance to the photon density complement network and the two-stage network,while consuming fewer floating point operations with fewer model parameters. 展开更多
关键词 Bioluminescence tomography image reconstruction neural field
在线阅读 下载PDF
Evaluation of influence of detrending CSES satellite data on lithospheric magnetic field modeling
15
作者 Jie Wang YanYan Yang +2 位作者 ZhiMa Zeren JianPing Huang HengXin Lu 《Earth and Planetary Physics》 2025年第2期346-356,共11页
The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive... The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive a global lithospheric magnetic field model. While preparing the datasets for this lithospheric magnetic field model, researchers found that they still contained prominent residual trends within the magnetic anomaly even once signals from other sources had been eliminated. However, no processing was undertaken to deal with the residual trends during modeling to avoid subjective processing and represent the realistic nature of the data. In this work, we analyze the influence of these residual trends on the lithospheric magnetic field modeling.Polynomials of orders 0–3 were used to fit the trend of each track and remove it for detrending. We then derived four models through detrending-based processing, and compared their power spectra and grid maps with those of the CSES original model and CHAOS-7model. The misfit between the model and the dataset decreased after detrending the data, and the convergence of the inverted spherical harmonic coefficients improved. However, detrending reduced the signal strength and the power spectrum, while detrending based on high-order polynomials introduced prominent distortions in details of the magnetic anomaly. Based on this analysis, we recommend along-track detrending by using a zero-order polynomial(removing a constant value) on the CSES magnetic anomaly data to drag its mean value to zero. This would lead to only a slight reduction in the signal strength while significantly improving the stability of the inverted coefficients and details of the anomaly. 展开更多
关键词 lithospheric magnetic field model satellite magnetic survey DETRENDING long-wavelength magnetic anomaly CSES
在线阅读 下载PDF
Dynamics of three ferrofluid droplets in a rotating magnetic field
16
作者 Xinping ZHOU Wencai XIAO +3 位作者 Qi ZHANG Chunyue LIANG Wanqiu ZHANG Fei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第3期591-600,共10页
Two-dimensional(2D)direct numerical simulations on the dynamics of three identical ferrofluid droplets suspended in a non-magnetic ambient fluid under a rotating uniform magnetic field are conducted,and the motion and... Two-dimensional(2D)direct numerical simulations on the dynamics of three identical ferrofluid droplets suspended in a non-magnetic ambient fluid under a rotating uniform magnetic field are conducted,and the motion and deformation of the three ferrofluid droplets are studied in this paper.Results show that there are four modes(i.e.,the three droplets'direct coalescence(TC),the coalescence of two droplets and the subsequent planetary motion with the third droplet(CAP),the three droplets'planetary motion(TP),and the independent spin(IS))for the three ferrofluid droplets,dependent on the magnetic Bond number(Bom)and the initial distance(d0)between two of the droplets.It is found that the decrease in d0and the increase in Bomcan make the droplets'mode change from the IS to the planetary motion,and then turn to the CAP.Furthermore,reducing Bomor d0is helpful for the droplets to become merged. 展开更多
关键词 ferrofluid droplet rotating magnetic field capillary force
在线阅读 下载PDF
Development and application of rock rheological constitutive model considering dynamic stress field and seepage field
17
作者 Yian Chen Guangming Zhao +2 位作者 Wensong Xu Shoujian Peng Jiang Xu 《International Journal of Mining Science and Technology》 2025年第3期467-482,共16页
The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is great... The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock. 展开更多
关键词 Generalized rheological test Seepage-stress coupling Seepage properties Dynamic stress field Rheological constitutive model
在线阅读 下载PDF
The intensity of geomagnetic storms associated with the interplanetary magnetic field and solar wind parameters during Solar Cycle 24
18
作者 Anwar Santoso Sismanto Sismanto +2 位作者 Rhorom Priyatikanto Eddy Hartantyo Dyah R.Martiningrum 《Earth and Planetary Physics》 2025年第2期375-386,共12页
Proper knowledge of the nature of geomagnetic storms and their relationships with the conditions of the space environment at the outer part of the Earth's magnetosphere(bow shock nose) is essential to increase our... Proper knowledge of the nature of geomagnetic storms and their relationships with the conditions of the space environment at the outer part of the Earth's magnetosphere(bow shock nose) is essential to increase our resilience to space weather disturbances. In this article, we present an analysis of the interplanetary magnetic field(IMF) and solar wind parameters relevant to 100 geomagnetic storms in Solar Cycle 24. We revisit the relationship between the minimum disturbance storm time index(Dst_(min)), the minimum southward IMF(B_(S, min)), the maximum solar wind density(N_(SW, max)) and speed(V_(max)), and the lag time between the extrema(dT(B_(z), N),dT(B_(z), V)). We end with a regression formula that fits the data, with a coefficient of determination of 0.58, a root mean square error of 21.30 nT, and a mean absolute error of 15.87 nT. Even though more complex machine learning models can outperform this model, it serves as a theoretically sensible alternative for understanding and forecasting geomagnetic storms. 展开更多
关键词 geomagnetic storm interplanetary magnetic field(IMF) solar wind space weather
在线阅读 下载PDF
Magnetic resonance imaging bias field correction improves tumor prognostic evaluation after transcatheter arterial chemoembolization for liver cancer
19
作者 Ke Liu Jun-Biao Li +1 位作者 Yong Wang Yan Li 《World Journal of Gastrointestinal Surgery》 2025年第4期207-220,共14页
BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evalu... BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evaluate accurately using conventional two-dimensional imaging criteria due to the tumor’s diffuse and multifocal growth pattern.Volumetric imaging,especially enhanced tumor volume(ETV),offers a more comprehensive assessment.Nonetheless,bias field inhomogeneity in magnetic resonance imaging(MRI)poses challenges,potentially skewing volumetric measurements and undermining prognostic evaluation.AIM To investigate whether MRI bias field correction enhances the accuracy of volumetric assessment of infiltrative hepatocellular carcinoma treated with TACE,and to analyze how this improved measurement impacts prognostic prediction.METHODS We retrospectively collected data from 105 patients with invasive liver cancer who underwent TACE treatment at the Affiliated Hospital of Xuzhou Medical University from January 2020 to January 2024.The improved N4 bias field correction algorithm was applied to process MRI images,and the ETV before and after treatment was calculated.The ETV measurements before and after correction were compared,and their relationship with patient prognosis was analyzed.A Cox proportional hazards model was used to evaluate prognostic factors,with Martingale residual analysis determining the optimal cutoff value,followed by survival analysis.RESULTS Bias field correction significantly affected ETV measurements,with the corrected baseline ETV mean(505.235 cm³)being significantly lower than before correction(825.632 cm³,P<0.001).Cox analysis showed that the hazard ratio(HR)for corrected baseline ETV(HR=1.165,95%CI:1.069-1.268)was higher than before correction(HR=1.063,95%CI:1.031-1.095).Using 412 cm³as the cutoff,the group with baseline ETV<415 cm³had a longer median survival time compared to the≥415 cm³group(18.523 months vs 8.926 months,P<0.001).The group with an ETV reduction rate≥41%had better prognosis than the<41%group(17.862 months vs 9.235 months,P=0.006).Multivariate analysis confirmed that ETV reduction rate(HR=0.412,P<0.001),Child-Pugh classification(HR=0.298,P<0.001),and Barcelona Clinic Liver Cancer stage(HR=0.578,P=0.045)were independent prognostic factors.CONCLUSION Volume imaging based on MRI bias field correction can improve the accuracy of evaluating the efficacy of TACE treatment for invasive liver cancer.The corrected ETV and its reduction rate can serve as independent indicators for predicting patient prognosis,providing important reference for developing individualized treatment strategies. 展开更多
关键词 Invasive liver cancer Transcatheter arterial chemoembolization Magnetic resonance imaging Bias field correction Volume imaging
在线阅读 下载PDF
PBL Course Design for the Integration of Business and Technology in FinTech Field
20
作者 Yixian Liu Jun Guo +2 位作者 Xiaochun Yang Dongming Chen Zhiliang Zhu 《计算机教育》 2025年第3期34-40,共7页
In response to the problem of improving practical abilities of students in the process of cultivating innovative talents in the field of financial technology in the specialized software college,this paper analyzes the... In response to the problem of improving practical abilities of students in the process of cultivating innovative talents in the field of financial technology in the specialized software college,this paper analyzes the characteristics and applicability of problem-based learning(PBL)method,proposes a PBL course integration design scheme for the integration of business and technology in the field of financial technology,and provides corresponding course cases.The plan described in this article has been jointly demonstrated by experts from schools and enterprises and has received good feedback. 展开更多
关键词 PBL course design Business and technology integration FinTech field
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部