In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids....In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids. Firstly, the original equation is transformed from the physical domain (with a nonuniform mesh) to the computational domain (with a uniform mesh) by using a coordinate transformation. Then, a fourth order compact difference scheme is proposed to solve the transformed elliptic equation on uniform girds. After that, a multigrid method is employed to solve the linear algebraic system arising from the difference equation. At last, the numerical experiments on some elliptic problems with interior/boundary layers are conducted to show high accuracy and high efficiency of the present method.展开更多
The nonlinear dispersive modified Benjamin-Bona-Mahony(DMBBM)equation is solved numerically using adaptive moving mesh PDEs(MMPDEs)method.Indeed,the exact solution of the DMBBM equation is obtained by using the extend...The nonlinear dispersive modified Benjamin-Bona-Mahony(DMBBM)equation is solved numerically using adaptive moving mesh PDEs(MMPDEs)method.Indeed,the exact solution of the DMBBM equation is obtained by using the extended Jacobian elliptic function expansion method.The current methods give a wider applicability for handling nonlinear wave equations in engineering and mathematical physics.The adaptive moving mesh method is compared with exact solution by numerical examples,where the explicit solutions are known.The numerical results verify the accuracy of the proposed method.展开更多
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular ...In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).展开更多
This paper presents a fourth-order Cartesian grid based boundary integral method(BIM)for heterogeneous interface problems in two and three dimensional space,where the problem interfaces are irregular and can be explic...This paper presents a fourth-order Cartesian grid based boundary integral method(BIM)for heterogeneous interface problems in two and three dimensional space,where the problem interfaces are irregular and can be explicitly given by parametric curves or implicitly defined by level set functions.The method reformulates the governing equation with interface conditions into boundary integral equations(BIEs)and reinterprets the involved integrals as solutions to some simple interface problems in an extended regular region.Solution of the simple equivalent interface problems for integral evaluation relies on a fourth-order finite difference method with an FFT-based fast elliptic solver.The structure of the coefficient matrix is preserved even with the existence of the interface.In the whole calculation process,analytical expressions of Green’s functions are never determined,formulated or computed.This is the novelty of the proposed kernel-free boundary integral(KFBI)method.Numerical experiments in both two and three dimensions are shown to demonstrate the algorithm efficiency and solution accuracy even for problems with a large diffusion coefficient ratio.展开更多
文摘In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids. Firstly, the original equation is transformed from the physical domain (with a nonuniform mesh) to the computational domain (with a uniform mesh) by using a coordinate transformation. Then, a fourth order compact difference scheme is proposed to solve the transformed elliptic equation on uniform girds. After that, a multigrid method is employed to solve the linear algebraic system arising from the difference equation. At last, the numerical experiments on some elliptic problems with interior/boundary layers are conducted to show high accuracy and high efficiency of the present method.
文摘The nonlinear dispersive modified Benjamin-Bona-Mahony(DMBBM)equation is solved numerically using adaptive moving mesh PDEs(MMPDEs)method.Indeed,the exact solution of the DMBBM equation is obtained by using the extended Jacobian elliptic function expansion method.The current methods give a wider applicability for handling nonlinear wave equations in engineering and mathematical physics.The adaptive moving mesh method is compared with exact solution by numerical examples,where the explicit solutions are known.The numerical results verify the accuracy of the proposed method.
基金This work is supported by the National Fujian Province Nature Science Research Funds
文摘In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).
基金the National Natural Science Foundation of China(Grant No.DMS-12101553,Grant No.DMS-11771290)the Natural Science Foundation of Zhejiang Province(Grant No.LQ22A010017)+4 种基金the National Key Research and Development Program of China(Project No.2020YFA0712000)the Science Challenge Project of China(Grant No.TZ2016002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA25000400)the National Science Foundation of America(Grant No.ECCS-1927432)also partially supported by the National Science Foundation of America(Grant No.DMS-1720420).
文摘This paper presents a fourth-order Cartesian grid based boundary integral method(BIM)for heterogeneous interface problems in two and three dimensional space,where the problem interfaces are irregular and can be explicitly given by parametric curves or implicitly defined by level set functions.The method reformulates the governing equation with interface conditions into boundary integral equations(BIEs)and reinterprets the involved integrals as solutions to some simple interface problems in an extended regular region.Solution of the simple equivalent interface problems for integral evaluation relies on a fourth-order finite difference method with an FFT-based fast elliptic solver.The structure of the coefficient matrix is preserved even with the existence of the interface.In the whole calculation process,analytical expressions of Green’s functions are never determined,formulated or computed.This is the novelty of the proposed kernel-free boundary integral(KFBI)method.Numerical experiments in both two and three dimensions are shown to demonstrate the algorithm efficiency and solution accuracy even for problems with a large diffusion coefficient ratio.