期刊文献+
共找到43,446篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative Evaluation of Predictive Models for Malaria Cases in Sierra Leone
1
作者 Saidu Wurie Jalloh Herbert Imboga +1 位作者 Mary H. Hodges Boniface Malenje 《Open Journal of Epidemiology》 2025年第1期188-216,共29页
Malaria remains a major public health challenge necessitating accurate predictive models to inform effective intervention strategies in Sierra Leone. This study compares the performance of Holt-Winters’ Exponential S... Malaria remains a major public health challenge necessitating accurate predictive models to inform effective intervention strategies in Sierra Leone. This study compares the performance of Holt-Winters’ Exponential Smoothing, Harmonic, and Artificial Neural Network (ANN) models using data from January 2018 to December 2023, incorporating both historical case records from Sierra Leone’s Health Management Information System (HMIS) and meteorological variables including humidity, precipitation, and temperature. The ANN model demonstrated superior performance, achieving a Mean Absolute Percentage Error (MAPE) of 4.74% before including climatic variables. This was further reduced to 3.9% with the inclusion of climatic variables, outperforming traditional models like Holt-Winters and Harmonic, which yielded MAPEs of 22.53% and 17.90% respectively. The ANN’s success is attributed to its ability to capture complex, non-linear relationships in the data, particularly when enhanced with relevant climatic variables. Using the optimized ANN model, we forecasted malaria cases for the next 24 months, predicting a steady increase from January 2024 to December 2025, with seasonal peaks. This study underscores the potential of machine learning approaches, particularly ANNs, in epidemiological modelling and highlights the importance of integrating environmental factors into malaria prediction models, recommending the ANN model for informing more targeted and efficient malaria control strategies to improve public health outcomes in Sierra Leone and similar settings. 展开更多
关键词 Malaria Cases Artificial Neural Networks Holt-Winters HARMONIC Climate Variables predictive modelling Public Health
在线阅读 下载PDF
Analysis of risk factors and predictive value of a nomogram model for sepsis in patients with diabetic foot
2
作者 Wen-Wen Han Jian-Jiang Fang 《World Journal of Diabetes》 2025年第4期144-152,共9页
BACKGROUND Sepsis is a severe complication in hospitalized patients with diabetic foot(DF),often associated with high morbidity and mortality.Despite its clinical significance,limited tools exist for early risk predic... BACKGROUND Sepsis is a severe complication in hospitalized patients with diabetic foot(DF),often associated with high morbidity and mortality.Despite its clinical significance,limited tools exist for early risk prediction.AIM To identify key risk factors and evaluate the predictive value of a nomogram model for sepsis in this population.METHODS This retrospective study included 216 patients with DF admitted from January 2022 to June 2024.Patients were classified into sepsis(n=31)and non-sepsis(n=185)groups.Baseline characteristics,clinical parameters,and laboratory data were analyzed.Independent risk factors were identified through multivariable logistic regression,and a nomogram model was developed and validated.The model's performance was assessed by its discrimination(AUC),calibration(Hosmer-Lemeshow test,calibration plots),and clinical utility[decision curve analysis(DCA)].RESULTS The multivariable analysis identified six independent predictors of sepsis:Diabetes duration,DF Texas grade,white blood cell count,glycated hemoglobin,Creactive protein,and albumin.A nomogram integrating these factors achieved excellent diagnostic performance,with an AUC of 0.908(95%CI:0.865-0.956)and robust internal validation(AUC:0.906).Calibration results showed strong agreement between predicted and observed probabilities(Hosmer-Lemeshow P=0.926).DCA demonstrated superior net benefit compared to extreme intervention scenarios,highlighting its clinical utility.CONCLUSION The nomogram prediction model,based on six key risk factors,demonstrates strong predictive value,calibration,and clinical utility for sepsis in patients with DF.This tool offers a practical approach for early risk stratification,enabling timely interventions and improved clinical management in this high-risk population. 展开更多
关键词 Diabetic foot SEPSIS Risk factors NOMOGRAM prediction model
在线阅读 下载PDF
Development and validation of a predictive model for endoscopic improvement of Crohn's disease
3
作者 Hua-Gang Wang Cang-La Nima Qi Zhou 《World Journal of Gastrointestinal Endoscopy》 2025年第2期16-27,共12页
BACKGROUND At present,there is a lack of non-invasive indicators to evaluate the changes in endoscopic activity between two visits for patients with Crohn's disease(CD).AIM To develop a model for predicting whethe... BACKGROUND At present,there is a lack of non-invasive indicators to evaluate the changes in endoscopic activity between two visits for patients with Crohn's disease(CD).AIM To develop a model for predicting whether endoscopic activity will improve in CD patients.METHODS This is a single-center retrospective study that included patients diagnosed with CD from January 2014 to December 2022.The patients were randomly divided into a modeling group(70%)and an internal validation group(30%),with an external validation group from January 2023 to March 2024.Univariate and binary logistic regression analyses were conducted to identify independent risk factors,which were used to construct a nomogram model.The model's performance was evaluated using receiver operating characteristic curves,calibration curves,and decision curve analysis(DCA).Additionally,further sensitivity analyses were performed.RESULTS One hundred seventy patients were included in the training group,while 64 were included in the external validation group.A binary logistic stepwise regression analysis revealed that the changes in the amplitudes of albumin(ALB)and fibrinogen(FIB)were independent risk factors for endoscopic improvement.A nomogram model was developed based on these risk factors.The area under the curve of the model for the training group,internal validation group,and external validation group were 0.802,0.788,and 0.787,respectively.The average absolute errors of the calibration curves were 0.011,0.016,and 0.018,respectively.DCA indicated that the model performs well in clinical practice.Additionally,sensitivity analysis demonstrated that the model has strong robustness and applicability.CONCLUSION Our study shows that changes in the amplitudes of ALB and FIB are effective predictors of endoscopic improvement in patients with CD during follow-up visits compared to their previous ones. 展开更多
关键词 Crohn’s disease Endoscopic improvement prediction model ALBUMIN FIBRINOGEN
在线阅读 下载PDF
A predictive model for intracranial hemorrhage in adult patients receiving extracorporeal membrane oxygenation
4
作者 Yi Zhu Lina Mao +7 位作者 Zhongman Zhang Sae Rom Lee Tianshi Li Hao Zhou Yanbin Dong Di An Wei Li Xufeng Chen 《World Journal of Emergency Medicine》 2025年第2期153-160,共8页
BACKGROUND:Intracranial hemorrhage (ICH),a severe complication among adults receiving extracorporeal membrane oxygenation (ECMO),is often related to poor outcomes.This study aimed to establish a predictive model for I... BACKGROUND:Intracranial hemorrhage (ICH),a severe complication among adults receiving extracorporeal membrane oxygenation (ECMO),is often related to poor outcomes.This study aimed to establish a predictive model for ICH in adults receiving ECMO treatment.METHODS:Adults who received ECMO between January 2017 and June 2022 were the subjects of a single-center retrospective study.Patients under the age of 18 years old,with acute ICH before ECMO,with less than 24 h of ECMO support,and with incomplete data were excluded.ICH was diagnosed by a head computed tomography scan.The outcomes included the incidence of ICH,in-hosptial mortality and 28-day mortality.Multivariate logistic regression analysis was used to identify relevant risk factors of ICH,and a predictive model of ICH with a nomogram was constructed.RESULTS:Among the 227 patients included,22 developed ICH during ECMO.Patients with ICH had higher in-hospital mortality (90.9%vs.47.8%,P=0.001) and higher 28-day mortality (81.8%vs.47.3%,P=0.001) than patients with non-ICH.ICH was associated with decreased grey-white-matter ratio (GWR)(OR=0.894,95%CI:0.841–0.951,P<0.001),stroke history (OR=4.265,95%CI:1.052–17.291,P=0.042),fresh frozen plasma (FFP) transfusion (OR=1.208,95%CI:1.037–1.408,P=0.015)and minimum platelet (PLT) count during ECMO support (OR=0.977,95%CI:0.958–0.996,P=0.019).The area under the receiver operating characteristic curve of the ICH predictive model was 0.843 (95%CI:0.762–0.924,P<0.001).CONCLUSION:ECMO-treated patients with ICH had a higher risk of death.GWR,stroke history,FFP transfusion,and the minimum PLT count were independently associated with ICH,and the ICH predictive model showed that these parameters performed well as diagnostic tools. 展开更多
关键词 Extracorporeal membrane oxygenation Intracranial hemorrhage predictive model Grey-white-matter ratio
在线阅读 下载PDF
Systematic review and critical appraisal of predictive models for diabetic peripheral neuropathy:Existing challenges and proposed enhancements
5
作者 Chao-Fan Sun Yu-Han Lin +3 位作者 Guo-Xing Ling Hui-Juan Gao Xing-Zhong Feng Chun-Quan Sun 《World Journal of Diabetes》 2025年第4期270-283,共14页
BACKGROUND The trend of risk prediction models for diabetic peripheral neuropathy(DPN)is increasing,but few studies focus on the quality of the model and its practical application.AIM To conduct a comprehensive system... BACKGROUND The trend of risk prediction models for diabetic peripheral neuropathy(DPN)is increasing,but few studies focus on the quality of the model and its practical application.AIM To conduct a comprehensive systematic review and rigorous evaluation of prediction models for DPN.METHODS A meticulous search was conducted in PubMed,EMBASE,Cochrane,CNKI,Wang Fang DATA,and VIP Database to identify studies published until October 2023.The included and excluded criteria were applied by the researchers to screen the literature.Two investigators independently extracted data and assessed the quality using a data extraction form and a bias risk assessment tool.Disagreements were resolved through consultation with a third investigator.Data from the included studies were extracted utilizing the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies.Additionally,the bias risk and applicability of the models were evaluated by the Prediction Model Risk of Bias Assessment Tool.RESULTS The systematic review included 14 studies with a total of 26 models.The area under the receiver operating characteristic curve of the 26 models was 0.629-0.938.All studies had high risks of bias,mainly due to participants,outcomes,and analysis.The most common predictors included glycated hemoglobin,age,duration of diabetes,lipid abnormalities,and fasting blood glucose.CONCLUSION The predictor model presented good differentiation,calibration,but there were significant methodological flaws and high risk of bias.Future studies should focus on improving the study design and study report,updating the model and verifying its adaptability and feasibility in clinical practice. 展开更多
关键词 Diabetic peripheral neuropathy predictive models Systematic review Risk factors Prognostic risk
在线阅读 下载PDF
Construction and validation of machine learning-based predictive model for colorectal polyp recurrence one year after endoscopic mucosal resection
6
作者 Yi-Heng Shi Jun-Liang Liu +5 位作者 Cong-Cong Cheng Wen-Ling Li Han Sun Xi-Liang Zhou Hong Wei Su-Juan Fei 《World Journal of Gastroenterology》 2025年第11期46-62,共17页
BACKGROUND Colorectal polyps are precancerous diseases of colorectal cancer.Early detection and resection of colorectal polyps can effectively reduce the mortality of colorectal cancer.Endoscopic mucosal resection(EMR... BACKGROUND Colorectal polyps are precancerous diseases of colorectal cancer.Early detection and resection of colorectal polyps can effectively reduce the mortality of colorectal cancer.Endoscopic mucosal resection(EMR)is a common polypectomy proce-dure in clinical practice,but it has a high postoperative recurrence rate.Currently,there is no predictive model for the recurrence of colorectal polyps after EMR.AIM To construct and validate a machine learning(ML)model for predicting the risk of colorectal polyp recurrence one year after EMR.METHODS This study retrospectively collected data from 1694 patients at three medical centers in Xuzhou.Additionally,a total of 166 patients were collected to form a prospective validation set.Feature variable screening was conducted using uni-variate and multivariate logistic regression analyses,and five ML algorithms were used to construct the predictive models.The optimal models were evaluated based on different performance metrics.Decision curve analysis(DCA)and SHapley Additive exPlanation(SHAP)analysis were performed to assess clinical applicability and predictor importance.RESULTS Multivariate logistic regression analysis identified 8 independent risk factors for colorectal polyp recurrence one year after EMR(P<0.05).Among the models,eXtreme Gradient Boosting(XGBoost)demonstrated the highest area under the curve(AUC)in the training set,internal validation set,and prospective validation set,with AUCs of 0.909(95%CI:0.89-0.92),0.921(95%CI:0.90-0.94),and 0.963(95%CI:0.94-0.99),respectively.DCA indicated favorable clinical utility for the XGBoost model.SHAP analysis identified smoking history,family history,and age as the top three most important predictors in the model.CONCLUSION The XGBoost model has the best predictive performance and can assist clinicians in providing individualized colonoscopy follow-up recommendations. 展开更多
关键词 Colorectal polyps Machine learning predictive model Risk factors SHapley Additive exPlanation
在线阅读 下载PDF
Risk factors and a predictive model of diabetic foot in hospitalized patients with type 2 diabetes
7
作者 Ming-Zhuo Li Fang Tang +6 位作者 Ya-Fei Liu Jia-Hui Lao Yang Yang Jia Cao Ru Song Peng Wu Yi-Bing Wang 《World Journal of Diabetes》 2025年第3期44-54,共11页
BACKGROUND The risk factors and prediction models for diabetic foot(DF)remain incompletely understood,with several potential factors still requiring in-depth investigations.AIM To identify risk factors for new-onset D... BACKGROUND The risk factors and prediction models for diabetic foot(DF)remain incompletely understood,with several potential factors still requiring in-depth investigations.AIM To identify risk factors for new-onset DF and develop a robust prediction model for hospitalized patients with type 2 diabetes.METHODS We included 6301 hospitalized patients with type 2 diabetes from January 2016 to December 2021.A univariate Cox model and least absolute shrinkage and selection operator analyses were applied to select the appropriate predictors.Nonlinear associations between continuous variables and the risk of DF were explored using restricted cubic spline functions.The Cox model was further employed to evaluate the impact of risk factors on DF.The area under the curve(AUC)was measured to evaluate the accuracy of the prediction model.RESULTS Seventy-five diabetic inpatients experienced DF.The incidence density of DF was 4.5/1000 person-years.A long duration of diabetes,lower extremity arterial disease,lower serum albumin,fasting plasma glucose(FPG),and diabetic nephropathy were independently associated with DF.Among these risk factors,the serum albumin concentration was inversely associated with DF,with a hazard ratio(HR)and 95%confidence interval(CI)of 0.91(0.88-0.95)(P<0.001).Additionally,a U-shaped nonlinear relationship was observed between the FPG level and DF.After adjusting for other variables,the HRs and 95%CI for FPG<4.4 mmol/L and≥7.0 mmol/L were 3.99(1.55-10.25)(P=0.004)and 3.12(1.66-5.87)(P<0.001),respectively,which was greater than the mid-range level(4.4-6.9 mmol/L).The AUC for predicting DF over 3 years was 0.797.CONCLUSION FPG demonstrated a U-shaped relationship with DF.Serum albumin levels were negatively associated with DF.The prediction nomogram model of DF showed good discrimination ability using diabetes duration,lower extremity arterial disease,serum albumin,FPG,and diabetic nephropathy(Clinicaltrial.gov NCT05519163). 展开更多
关键词 Type 2 diabetes Diabetic foot Nonlinear association prediction model Retrospective cohort
在线阅读 下载PDF
Development and validation of a predictive model for the pathological upgrading of gastric low-grade intraepithelial neoplasia
8
作者 Kun-Ming Lyu Qian-Qian Chen +4 位作者 Yi-Fan Xu Yao-Qian Yuan Jia-Feng Wang Jun Wan En-Qiang Ling-Hu 《World Journal of Gastroenterology》 2025年第11期63-73,共11页
BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To ... BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment. 展开更多
关键词 Endoscopic resection Gastric low-grade intraepithelial neoplasia Early gastric cancer Pathological upgrade prediction model
在线阅读 下载PDF
Determinants of generalized anxiety and construction of a predictive model in patients with chronic obstructive pulmonary disease
9
作者 Yi-Pu Zhao Wei-Hua Liu Qun-Cheng Zhang 《World Journal of Psychiatry》 2025年第2期48-58,共11页
BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety d... BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff. 展开更多
关键词 Chronic obstructive pulmonary disease Generalized anxiety disorder predictive model Determinants analysis Forest plot
在线阅读 下载PDF
Distributed stochastic model predictive control for energy dispatch with distributionally robust optimization
10
作者 Mengting LIN Bin LI C.C.ECATI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期323-340,共18页
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer... A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved. 展开更多
关键词 distributed stochastic model predictive control(DSMPC) distributionally robust optimization(DRO) islanded multi-microgrid energy dispatch strategy
在线阅读 下载PDF
Infrared Thermography-Based Predictive Model for Syndrome Differentiation of Chaihu Guizhi Ganjiang Decoction
11
作者 Huisi Hong Yiming Yuan +3 位作者 Na Li Xiaoxing Huang Leyu Li Tingting Zeng 《Proceedings of Anticancer Research》 2025年第1期27-36,共10页
Objective:To evaluate the use of infrared thermography technology for objective and quantitative syndrome differentiation and treatment in traditional Chinese medicine(TCM),specifically in patients with Chaihu Guizhi ... Objective:To evaluate the use of infrared thermography technology for objective and quantitative syndrome differentiation and treatment in traditional Chinese medicine(TCM),specifically in patients with Chaihu Guizhi Ganjiang Decoction syndrome.Methods:Data were collected from over 100 patients diagnosed with Chaihu Guizhi Ganjiang Decoction syndrome at Professor Li Leyu’s endocrinology clinic,Zhongshan Hospital of Traditional Chinese Medicine,Guangdong Province,between April 2021 and April 2022.Body surface temperature data were obtained using the MTI-EXPRO-2013-B infrared thermography system.Principal component analysis(PCA)was applied to differentiate temperature distribution characteristics between genders,and a neural network prediction model was constructed for syndrome diagnosis.Results:Infrared thermography effectively captured surface temperature characteristics of patients with Chaihu Guizhi Ganjiang Decoction syndrome.PCA identified one principal component with a variance explanation rate of 73.953%for females and two principal components with a cumulative variance explanation rate of 77.627%for males.The neural network model demonstrated high predictive performance,with an area under the ROC curve of 0.9743 for the training set and 0.9889 for the validation set.Sensitivity was 1,specificity 0.8636,precision 0.8846,accuracy 0.9333,and the F1 score 0.9388.Conclusion:Infrared thermography provides an innovative,objective,and quantitative method for syndrome differentiation and treatment in TCM.It represents a significant advancement in transitioning from traditional empirical approaches to modern,visualized,and precise diagnosis and treatment.This study underscores the potential of integrating advanced technologies in TCM for enhanced clinical application and modernization. 展开更多
关键词 Infrared thermography technology Chaihu Guizhi Ganjiang Decoction syndrome Syndrome differentiation and treatment Data analysis predictive models Modernization of traditional Chinese medicine
在线阅读 下载PDF
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:3
12
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique predictive modeling Surgical outcomes
在线阅读 下载PDF
Fourth-order phase-field modeling for brittle fracture in piezoelectric materials
13
作者 Yu TAN Fan PENG +2 位作者 Chang LIU Daiming PENG Xiangyu LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期837-856,共20页
Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilt... Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications. 展开更多
关键词 isogeometric analysis(IGA) brittle fracture fourth-order phase-field model piezoelectric solid
在线阅读 下载PDF
Modeling and Predictive Analytics of Breast Cancer Using Ensemble Learning Techniques:An Explainable Artificial Intelligence Approach
14
作者 Avi Deb Raha Fatema Jannat Dihan +8 位作者 Mrityunjoy Gain Saydul Akbar Murad Apurba Adhikary Md.Bipul Hossain Md.Mehedi Hassan Taher Al-Shehari Nasser A.Alsadhan Mohammed Kadrie Anupam Kumar Bairagi 《Computers, Materials & Continua》 SCIE EI 2024年第12期4033-4048,共16页
Breast cancer stands as one of the world’s most perilous and formidable diseases,having recently surpassed lung cancer as the most prevalent cancer type.This disease arises when cells in the breast undergo unregulate... Breast cancer stands as one of the world’s most perilous and formidable diseases,having recently surpassed lung cancer as the most prevalent cancer type.This disease arises when cells in the breast undergo unregulated proliferation,resulting in the formation of a tumor that has the capacity to invade surrounding tissues.It is not confined to a specific gender;both men and women can be diagnosed with breast cancer,although it is more frequently observed in women.Early detection is pivotal in mitigating its mortality rate.The key to curbing its mortality lies in early detection.However,it is crucial to explain the black-box machine learning algorithms in this field to gain the trust of medical professionals and patients.In this study,we experimented with various machine learning models to predict breast cancer using the Wisconsin Breast Cancer Dataset(WBCD)dataset.We applied Random Forest,XGBoost,Support Vector Machine(SVM),Multi-Layer Perceptron(MLP),and Gradient Boost classifiers,with the Random Forest model outperforming the others.A comparison analysis between the two methods was done after performing hyperparameter tuning on each method.The analysis showed that the random forest performs better and yields the highest result with 99.46%accuracy.After performance evaluation,two Explainable Artificial Intelligence(XAI)methods,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-Agnostic Explanations(LIME),have been utilized to explain the random forest machine learning model. 展开更多
关键词 Breast cancer prediction machine learning models explainable artificial intelligence random forest hyperparameter tuning
在线阅读 下载PDF
Predictive modeling for post operative delirium in elderly
15
作者 Chris B Lamprecht Abeer Dagra Brandon Lucke-Wold 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3761-3764,共4页
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom... Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability. 展开更多
关键词 Post-operative delirium Elderly delirium Neurocognitive syndrome NEUROTRANSMITTERS Abdominal malignancy predictive model Synthetic minority oversampling technique
在线阅读 下载PDF
Distributionally robust model predictive control for constrained robotic manipulators based on neural network modeling
16
作者 Yiheng YANG Kai ZHANG +1 位作者 Zhihua CHEN Bin LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第12期2183-2202,共20页
A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraint... A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation. 展开更多
关键词 robotic manipulator trajectory tracking control neural network(NN) distributionally robust optimization(DRO) model predictive control(MPC)
在线阅读 下载PDF
Fourth-Order Predictive Modelling: I. General-Purpose Closed-Form Fourth-Order Moments-Constrained MaxEnt Distribution
17
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第4期413-438,共26页
This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and k... This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and kurtosis) of the optimally predicted distribution of model results and calibrated model parameters, by combining fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters. Underlying the construction of this fourth-order predictive modeling methodology is the “maximum entropy principle” which is initially used to obtain a novel closed-form expression of the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) probability distribution constructed from the first four moments (means, covariances, skewness, kurtosis), which are assumed to be known, of an otherwise unknown distribution of a high-dimensional multivariate uncertain quantity of interest. This fourth-order MaxEnt distribution provides optimal compatibility of the available information while simultaneously ensuring minimal spurious information content, yielding an estimate of a probability density with the highest uncertainty among all densities satisfying the known moment constraints. Since this novel generic fourth-order MaxEnt distribution is of interest in its own right for applications in addition to predictive modeling, its construction is presented separately, in this first part of a two-part work. The fourth-order predictive modeling methodology that will be constructed by particularizing this generic fourth-order MaxEnt distribution will be presented in the accompanying work (Part-2). 展开更多
关键词 Maximum Entropy Principle fourth-order predictive modeling Data Assimilation Data Adjustment Reduced predicted Uncertainties model Parameter Calibration
在线阅读 下载PDF
Fourth-Order Predictive Modelling: II. 4th-BERRU-PM Methodology for Combining Measurements with Computations to Obtain Best-Estimate Results with Reduced Uncertainties
18
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第4期439-475,共37页
This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, com... This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, computed and measured model responses, as well as fourth (and higher) order sensitivities of computed model responses to model parameters. This new methodology is designated by the acronym 4<sup>th</sup>-BERRU-PM, which stands for “fourth-order best-estimate results with reduced uncertainties.” The results predicted by the 4<sup>th</sup>-BERRU-PM incorporates, as particular cases, the results previously predicted by the second-order predictive modeling methodology 2<sup>nd</sup>-BERRU-PM, and vastly generalizes the results produced by extant data assimilation and data adjustment procedures. 展开更多
关键词 fourth-order predictive modeling Data Assimilation Data Adjustment Uncertainty Quantification Reduced predicted Uncertainties
在线阅读 下载PDF
Establishment of predictive models and determinants of preoperative gastric retention in endoscopic retrograde cholangiopancreatography 被引量:3
19
作者 Ying Jia Hao-Jun Wu +3 位作者 Tang Li Jia-Bin Liu Ling Fang Zi-Ming Liu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第8期2574-2582,共9页
BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects t... BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value. 展开更多
关键词 CHOLANGIOPANCREATOGRAPHY Gastric retention Influencing factors predictive model ENDOSCOPE
在线阅读 下载PDF
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:2
20
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部