期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Semi-Discrete and Fully Discrete Weak Galerkin Finite Element Methods for a Quasistatic Maxwell Viscoelastic Model
1
作者 Jihong Xiao Zimo Zhu Xiaoping Xie 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第1期79-110,共32页
This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model.The spatial discretization uses piecewise polynomials of degree k(k≥1)for t... This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model.The spatial discretization uses piecewise polynomials of degree k(k≥1)for the stress approximation,degree k+1 for the velocity approximation,and degree k for the numerical trace of velocity on the inter-element boundaries.The temporal discretization in the fully discrete method adopts a backward Euler difference scheme.We show the existence and uniqueness of the semi-discrete and fully discrete solutions,and derive optimal a priori error estimates.Numerical examples are provided to support the theoretical analysis. 展开更多
关键词 Quasistatic Maxwell viscoelastic model weak Galerkin method semi-discrete scheme fully discrete scheme error estimate
原文传递
Asymptotic-Preserving Discrete Schemes for Non-Equilibrium Radiation Diffusion Problem in Spherical and Cylindrical Symmetrical Geometries
2
作者 Xia Cui Zhi-Jun Shen Guang-Wei Yuan 《Communications in Computational Physics》 SCIE 2018年第1期198-229,共32页
We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s f... We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems. 展开更多
关键词 Spherical symmetrical geometry cylindrical symmetrical geometry non-equilibrium radiation diffusion problem fully discrete schemes asymptotic-preserving second order accuracy
原文传递
Convergence of Weak Galerkin Finite Element Method for Second Order Linear Wave Equation in Heterogeneous Media
3
作者 Bhupen Deka Papri Roy +1 位作者 Naresh Kumar Raman Kumar 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第2期323-347,共25页
Weak Galerkin finite element method is introduced for solving wave equation with interface on weak Galerkin finite element space(Pk(K),P_(k−1)(∂K),[P_(k−1)(K)]^(2)).Optimal order a priori error estimates for both spac... Weak Galerkin finite element method is introduced for solving wave equation with interface on weak Galerkin finite element space(Pk(K),P_(k−1)(∂K),[P_(k−1)(K)]^(2)).Optimal order a priori error estimates for both space-discrete scheme and implicit fully discrete scheme are derived in L1(L2)norm.This method uses totally discontinuous functions in approximation space and allows the usage of finite element partitions consisting of general polygonal meshes.Finite element algorithm presented here can contribute to a variety of hyperbolic problems where physical domain consists of heterogeneous media. 展开更多
关键词 Wave equation heterogeneous medium finite element method weak Galerkin method semidiscrete and fully discrete schemes optimal error estimates
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部