期刊文献+
共找到5,693篇文章
< 1 2 250 >
每页显示 20 50 100
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
1
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
SL-COA:Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis
2
作者 Yunhan Ling Huajun Peng +4 位作者 Yiqing Shi Chao Xu Jingzhen Yan Jingjing Wang Hui Ma 《Computer Modeling in Engineering & Sciences》 2025年第4期767-808,共42页
Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence spee... Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis. 展开更多
关键词 hybrid reliability analysis single-loop interactive hybrid analysis most probability point metaheuristic algorithms coati optimization algorithm
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
3
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 Multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Hybrid Optimization Algorithm for Handwritten Document Enhancement
4
作者 Shu-Chuan Chu Xiaomeng Yang +2 位作者 Li Zhang Václav Snášel Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3763-3786,共24页
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro... The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms. 展开更多
关键词 Metaheuristic algorithm gannet optimization algorithm hybrid algorithm handwritten document enhancement
在线阅读 下载PDF
Optimization of LSTM Ship Trajectory Prediction Based on Hybrid Genetic Algorithm
5
作者 ZHAO Pengfei 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期89-102,共14页
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit... Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction. 展开更多
关键词 trajectory prediction LSTM hybrid genetic algorithm
在线阅读 下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
6
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
在线阅读 下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
7
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
在线阅读 下载PDF
基于JPS和变半径RS曲线的Hybrid A^(*)路径规划算法
8
作者 张博强 张成龙 +1 位作者 冯天培 高向川 《郑州大学学报(工学版)》 北大核心 2025年第2期19-25,共7页
为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS... 为解决混合A^(*)(Hybrid A^(*))算法在高分辨率地图和复杂场景下搜索效率低、耗费时间长的问题,通过对影响传统Hybrid A^(*)算法搜索效率的因素进行分析,提出了J-Hybrid A^(*)算法。首先,在Hybrid A^(*)算法扩展节点前,使用跳点搜索(JPS)算法进行起点到终点的路径搜索,将该路径进行拉直处理后作为计算节点启发值的基础;其次,设计了新的启发函数,在Hybrid A^(*)算法扩展前就能完成所有节点启发值的计算,减少了Hybrid A^(*)扩展节点时计算启发值所需的时间;最后,将RS曲线由最小转弯半径搜索改为变半径RS曲线搜索,使RS曲线能够更早搜索到一条无碰撞路径,进一步提升了Hybrid A^(*)算法的搜索效率。仿真结果表明:所提J-Hybrid A^(*)算法在简单环境中比传统Hybrid A^(*)算法和反向Hybrid A^(*)算法用时分别缩短68%、21%,在复杂环境中缩短59%、27%。在不同分辨率地图场景中,随着地图分辨率的提高,规划效率显著提升。实车实验表明:所提J-Hybrid A^(*)算法相较于传统Hybrid A^(*)算法和反向Hybrid A^(*)算法的搜索用时分别减少88%、82%,有效提升了Hybrid A^(*)算法的搜索效率、缩短了路径规划所需时间。 展开更多
关键词 hybrid A^(*)算法 启发函数 JPS算法 RS曲线 路径规划
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System
9
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
基于GA-BFGS混合算法的多目标粘弹性模型参数优化 被引量:1
10
作者 郭亚娟 李鸿光 孟光 《振动工程学报》 EI CSCD 北大核心 2008年第1期84-90,共7页
粘弹性材料的本构模型对复合结构的动力分析至关重要,一个精度高、结构简单的本构模型可以使系统分析简单、有效。本文首先采用动态力学热分析仪对一类沥青型阻尼材料进行力学特性测试,得出粘弹性沥青材料的存储模量,损耗模量及损耗因... 粘弹性材料的本构模型对复合结构的动力分析至关重要,一个精度高、结构简单的本构模型可以使系统分析简单、有效。本文首先采用动态力学热分析仪对一类沥青型阻尼材料进行力学特性测试,得出粘弹性沥青材料的存储模量,损耗模量及损耗因子随频率变化曲线。进而采用一种基于遗传算法(GA)和拟牛顿算法(BFG S)混合算法,对标准流变学模型(STD)、ADF模型以及GHM模型进行了参数优化,结合目标函数的优化结果,分析了各个模型的优缺点。研究表明:(1)GA-BFG S混合算法可以得到精确的全局最优解,且计算量不大,适合于该类问题的求解;(2)对于该类沥青型粘弹性阻尼材料,STD模型,ADF模型可以在较少的待定参数下得到较好的拟合结果;(3)由于ADF模型方便和有限元结合,更适合采用有限元方法对复杂结构分析。参数优化结果为该类阻尼材料的复合结构分析奠定了基础。 展开更多
关键词 粘弹性 本构关系 优化 ga-bfgs混合算法
在线阅读 下载PDF
HYBRID MULTI-OBJECTIVE GRADIENT ALGORITHM FOR INVERSE PLANNING OF IMRT
11
作者 李国丽 盛大宁 +3 位作者 王俊椋 景佳 王超 闫冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期97-101,共5页
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an... The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications. 展开更多
关键词 gradient methods inverse planning multi-objective optimization hybrid gradient algorithm
在线阅读 下载PDF
Series-parallel Hybrid Vehicle Control Strategy Design and Optimization Using Real-valued Genetic Algorithm 被引量:14
12
作者 XIONG Weiwei YIN Chengliang ZHANG Yong ZHANG Jianlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期862-868,共7页
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been... Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles. 展开更多
关键词 series-parallel hybrid electric vehicle control strategy DESIGN OPTIMIZATION real-valued genetic algorithm
在线阅读 下载PDF
Identification of vibration loads on hydro generator by using hybrid genetic algorithm 被引量:6
13
作者 Shouju Li Yingxi Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期603-610,共8页
Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybr... Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm. From the measured dynamic responses of a hydro generator, an appropriate estimation algorithm is needed to identify the loading parameters, including the main frequencies and amplitudes of vibrating forces. In order to identify parameters in an efficient and robust manner, an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy. The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification, in which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data. 展开更多
关键词 hybrid genetic algorithm Parameteridentification Vibration responses Fieldmeasurement Simulated annealing
在线阅读 下载PDF
Parameter selection of support vector regression based on hybrid optimization algorithm and its application 被引量:9
14
作者 Xin WANG Chunhua YANG +1 位作者 Bin QIN Weihua GUI 《控制理论与应用(英文版)》 EI 2005年第4期371-376,共6页
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters... Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods, 展开更多
关键词 Support vector regression Parameters tuning hybrid optimization Genetic algorithm(GA)
在线阅读 下载PDF
A New Hybrid Algorithm and Its Numerical Realization for a Quasi-nonexpansive Mapping 被引量:7
15
作者 GAO XING-HUI MA LE-RONG Ji You-qing 《Communications in Mathematical Research》 CSCD 2017年第4期340-346,共7页
The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also inclu... The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also included to explain the effectiveness of the proposed methods. The results of this paper are interesting extensions of those known results. 展开更多
关键词 quasi-nonexpansive mapping hybrid algorithm strong convergence Hilbert space
在线阅读 下载PDF
New hybrid FDTD algorithm for electromagnetic problem analysis 被引量:3
16
作者 Xin-Bo He Bing Wei +2 位作者 Kai-Hang Fan Yi-Wen Li Xiao-Long Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期211-215,共5页
Since the time step of the traditional finite-difference time-domain(FDTD) method is limited by the small grid size, it is inefficient when dealing with the electromagnetic problems of multi-scale structures.Therefore... Since the time step of the traditional finite-difference time-domain(FDTD) method is limited by the small grid size, it is inefficient when dealing with the electromagnetic problems of multi-scale structures.Therefore, the explicit and unconditionally stable FDTD(US-FDTD) approach has been developed to break through the limitation of Courant–Friedrich–Levy(CFL) condition.However, the eigenvalues and eigenvectors of the system matrix must be calculated before the time iteration in the explicit US-FDTD.Moreover, the eigenvalue decomposition is also time consuming, especially for complex electromagnetic problems in practical application.In addition, compared with the traditional FDTD method, the explicit US-FDTD method is more difficult to introduce the absorbing boundary and plane wave.To solve the drawbacks of the traditional FDTD and the explicit US-FDTD, a new hybrid FDTD algorithm is proposed in this paper.This combines the explicit US-FDTD with the traditional FDTD, which not only overcomes the limitation of CFL condition but also reduces the system matrix dimension, and introduces the plane wave and the perfectly matched layer(PML) absorption boundary conveniently.With the hybrid algorithm, the calculation of the eigenvalues is only required in the fine mesh region and adjacent coarse mesh region.Therefore, the calculation efficiency is greatly enhanced.Furthermore, the plane wave and the absorption boundary introduction of the traditional FDTD method can be directly utilized.Numerical results demonstrate the effectiveness, accuracy, stability, and convenience of this hybrid algorithm. 展开更多
关键词 unconditionally STABLE hybrid FDTD algorithm ELECTROMAGNETIC PROBLEM
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
17
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
A Gridless-Finite Volume Hybrid Algorithm for Euler Equations 被引量:4
18
作者 马志华 陈红全 吴晓军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期286-294,共9页
A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm i... A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm is improved to the level of finite volume method for most parts of the flow filed arc covered with grid cells. Moreover, the hybrid method is flexible to deal with the configurations as clouds of points are used to cover the region adjacent to the bodies. Mirror satellites and mirror grid cells arc introduced to the interface to accomplish data communication between the different parts of the flow field. The Euler Equations arc spatially discretized with finite volume method and gridless method in mesh and clouds of points respectively, and an explicit four-stage Runge-Kutta scheme is utilized to reach the steady-state solution. Internal flows in channels and external flows over airfoils arc investigated with hybrid method, and the solutions arc comparad to those using pure finite volume method and pure gridless method. Numerical examples show that the hybrid algorithm captures the shock waves accurately, and it is as efficient as fmite volume method. 展开更多
关键词 fluid mechanicsl hybrid algorithm gridless method finite volume method Euler equations
在线阅读 下载PDF
Optimization of the seismic processing phase-shift plus finite-difference migration operator based on a hybrid genetic and simulated annealing algorithm 被引量:2
19
作者 Luo Renze Huang Yuanyi +2 位作者 Liang Xianghao Luo Jun Cao Ying 《Petroleum Science》 SCIE CAS CSCD 2013年第2期190-194,共5页
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome... Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation. 展开更多
关键词 Migration operator phase-shift plus finite-difference hybrid algorithm genetic andsimulated annealing algorithm optimization coefficient
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
20
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部