Task scheduling plays a crucial role in cloud computing and is a key factor determining cloud computing performance.To solve the task scheduling problem for remote sensing data processing in cloud computing,this paper...Task scheduling plays a crucial role in cloud computing and is a key factor determining cloud computing performance.To solve the task scheduling problem for remote sensing data processing in cloud computing,this paper proposes a workflow task scheduling algorithm—Workflow Task Scheduling Algorithm based on Deep Reinforcement Learning(WDRL).The remote sensing data process modeling is transformed into a directed acyclic graph scheduling problem.Then,the algorithm is designed by establishing a Markov decision model and adopting a fitness calculation method.Finally,combine the advantages of reinforcement learning and deep neural networks to minimize make-time for remote sensing data processes from experience.The experiment is based on the development of CloudSim and Python and compares the change of completion time in the process of remote sensing data.The results showthat compared with several traditionalmeta-heuristic scheduling algorithms,WDRL can effectively achieve the goal of optimizing task scheduling efficiency.展开更多
Studies on land use and land cover changes (LULCC) have been a great concern due to their contribution to the policies formulation and strategic plans in different areas and at different scales. The LULCC when intense...Studies on land use and land cover changes (LULCC) have been a great concern due to their contribution to the policies formulation and strategic plans in different areas and at different scales. The LULCC when intense and on a global scale can be catastrophic if not detected and monitored affecting the key aspects of the ecosystem’s functions. For decades, technological developments and tools of geographic information systems (GIS), remote sensing (RS) and machine learning (ML) since data acquisition, processing and results in diffusion have been investigated to access landscape conditions and hence, different land use and land cover classification systems have been performed at different levels. Providing coherent guidelines, based on literature review, to examine, evaluate and spread such conditions could be a rich contribution. Therefore, hundreds of relevant studies available in different databases (Science Direct, Scopus, Google Scholar) demonstrating advances achieved in local, regional and global land cover classification products at different spatial, spectral and temporal resolutions over the past decades were selected and investigated. This article aims to show the main tools, data, approaches applied for analysis, assessment, mapping and monitoring of LULCC and to investigate some associated challenges and limitations that may influence the performance of future works, through a progressive perspective. Based on this study, despite the advances archived in recent decades, issues related to multi-source, multi-temporal and multi-level analysis, robustness and quality, scalability need to be further studied as they constitute some of the main challenges for remote sensing.展开更多
This paper explores the use of cloud computing for remote sensing image processing.The main contribution of our work is to develop a remote sensing image processing platform based on cloud computing technology(OpenRS-...This paper explores the use of cloud computing for remote sensing image processing.The main contribution of our work is to develop a remote sensing image processing platform based on cloud computing technology(OpenRS-Cloud).This paper focuses on enabling methodical investigations into the development pattern,computational model,data management and service model exploring this novel distributed computing model.The experimental INSAR processing flow is implemented to verify the efficiency and feasibility of OpenRS-Cloud platform.The results show that cloud computing is well suited for computationally-intensive and data-intensive remote sensing services.展开更多
The rapid growth of remote sensing big data(RSBD)has attracted considerable attention from both academia and industry.Despite the progress of computer technologies,conventional computing implementations have become te...The rapid growth of remote sensing big data(RSBD)has attracted considerable attention from both academia and industry.Despite the progress of computer technologies,conventional computing implementations have become technically inefficient for processing RSBD.Cloud computing is effective in activating and mining large-scale heterogeneous data and has been widely applied to RSBD over the past years.This study performs a technical review of cloud-based RSBD storage and computing from an interdisciplinary viewpoint of remote sensing and computer science.First,we elaborate on four critical technical challenges resulting from the scale expansion of RSBD applications,i.e.raster storage,metadata management,data homogeneity,and computing paradigms.Second,we introduce state-of-the-art cloud-based data management technologies for RSBD storage.The unit for manipulating remote sensing data has evolved due to the scale expansion and use of novel technologies,which we name the RSBD data model.Four data models are suggested,i.e.scenes,ARD,data cubes,and composite layers.Third,we summarize recent research on the application of various cloud-based parallel computing technologies to RSBD computing implementations.Finally,we categorize the architectures of mainstream RSBD platforms.This research provides a comprehensive review of the fundamental issues of RSBD for computing experts and remote sensing researchers.展开更多
Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing da...Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing data processing is time-consuming and resource-intensive,and significantly hampers the efficiency and timeliness of soil moisture mapping.Due to the high-speed computing capabilities of remote sensing cloud platforms,a High Spatial Resolution Soil Moisture Estimation Framework(HSRSMEF)based on the Google Earth Engine(GEE)platform was developed in this study.The functions of the HSRSMEF include research area and input datasets customization,radar speckle noise filtering,optical-radar image spatio-temporal matching,soil moisture retrieving,soil moisture visualization and exporting.This paper tested the performance of HSRSMEF by combining Sentinel-1,Sentinel-2 images and insitu soil moisture data in the central farmland area of Jilin Province,China.Reconstructed Normalized Difference Vegetation Index(NDVI)based on the Savitzky-Golay algorithm conforms to the crop growth cycle,and its correlation with the original NDVI is about 0.99(P<0.001).The soil moisture accuracy of the random forest model(R 2=0.942,RMSE=0.013 m3/m3)is better than that of the water cloud model(R 2=0.334,RMSE=0.091 m3/m3).HSRSMEF transfers time-consuming offline operations to cloud computing platforms,achieving rapid and simplified high spatial resolution soil moisture mapping.展开更多
基金funded in part by the Key Research and Promotion Projects of Henan Province under Grant Nos.212102210079,222102210052,222102210007,and 222102210062.
文摘Task scheduling plays a crucial role in cloud computing and is a key factor determining cloud computing performance.To solve the task scheduling problem for remote sensing data processing in cloud computing,this paper proposes a workflow task scheduling algorithm—Workflow Task Scheduling Algorithm based on Deep Reinforcement Learning(WDRL).The remote sensing data process modeling is transformed into a directed acyclic graph scheduling problem.Then,the algorithm is designed by establishing a Markov decision model and adopting a fitness calculation method.Finally,combine the advantages of reinforcement learning and deep neural networks to minimize make-time for remote sensing data processes from experience.The experiment is based on the development of CloudSim and Python and compares the change of completion time in the process of remote sensing data.The results showthat compared with several traditionalmeta-heuristic scheduling algorithms,WDRL can effectively achieve the goal of optimizing task scheduling efficiency.
文摘Studies on land use and land cover changes (LULCC) have been a great concern due to their contribution to the policies formulation and strategic plans in different areas and at different scales. The LULCC when intense and on a global scale can be catastrophic if not detected and monitored affecting the key aspects of the ecosystem’s functions. For decades, technological developments and tools of geographic information systems (GIS), remote sensing (RS) and machine learning (ML) since data acquisition, processing and results in diffusion have been investigated to access landscape conditions and hence, different land use and land cover classification systems have been performed at different levels. Providing coherent guidelines, based on literature review, to examine, evaluate and spread such conditions could be a rich contribution. Therefore, hundreds of relevant studies available in different databases (Science Direct, Scopus, Google Scholar) demonstrating advances achieved in local, regional and global land cover classification products at different spatial, spectral and temporal resolutions over the past decades were selected and investigated. This article aims to show the main tools, data, approaches applied for analysis, assessment, mapping and monitoring of LULCC and to investigate some associated challenges and limitations that may influence the performance of future works, through a progressive perspective. Based on this study, despite the advances archived in recent decades, issues related to multi-source, multi-temporal and multi-level analysis, robustness and quality, scalability need to be further studied as they constitute some of the main challenges for remote sensing.
基金supported by the National Natural Science Foundation of China(Grant No.40721001)the National Basic Research Program of China("973"Project)(Grant No.2006CB701304)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2007AA120203)
文摘This paper explores the use of cloud computing for remote sensing image processing.The main contribution of our work is to develop a remote sensing image processing platform based on cloud computing technology(OpenRS-Cloud).This paper focuses on enabling methodical investigations into the development pattern,computational model,data management and service model exploring this novel distributed computing model.The experimental INSAR processing flow is implemented to verify the efficiency and feasibility of OpenRS-Cloud platform.The results show that cloud computing is well suited for computationally-intensive and data-intensive remote sensing services.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences,Project title:CASEarth:[Grant Number XDA19080103,XDA19080101]Innovation Drive Development Special Project of Guangxi:[Grant Number GuikeAA20302022]National Natural Science Foundation of China:[Grant Number 41974108].
文摘The rapid growth of remote sensing big data(RSBD)has attracted considerable attention from both academia and industry.Despite the progress of computer technologies,conventional computing implementations have become technically inefficient for processing RSBD.Cloud computing is effective in activating and mining large-scale heterogeneous data and has been widely applied to RSBD over the past years.This study performs a technical review of cloud-based RSBD storage and computing from an interdisciplinary viewpoint of remote sensing and computer science.First,we elaborate on four critical technical challenges resulting from the scale expansion of RSBD applications,i.e.raster storage,metadata management,data homogeneity,and computing paradigms.Second,we introduce state-of-the-art cloud-based data management technologies for RSBD storage.The unit for manipulating remote sensing data has evolved due to the scale expansion and use of novel technologies,which we name the RSBD data model.Four data models are suggested,i.e.scenes,ARD,data cubes,and composite layers.Third,we summarize recent research on the application of various cloud-based parallel computing technologies to RSBD computing implementations.Finally,we categorize the architectures of mainstream RSBD platforms.This research provides a comprehensive review of the fundamental issues of RSBD for computing experts and remote sensing researchers.
基金Under the auspices of National Key Research and Development Project of China(No.2021YFD1500103)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28100500)+2 种基金National Natural Science Foundation of China(No.4197132)Science and Technology Development Plan Project of Jilin Province(No.20210201044GX)Land Observation Satellite Supporting Platform of National Civil Space Infrastructure Project(No.CASPLOS-CCSI)。
文摘Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing data processing is time-consuming and resource-intensive,and significantly hampers the efficiency and timeliness of soil moisture mapping.Due to the high-speed computing capabilities of remote sensing cloud platforms,a High Spatial Resolution Soil Moisture Estimation Framework(HSRSMEF)based on the Google Earth Engine(GEE)platform was developed in this study.The functions of the HSRSMEF include research area and input datasets customization,radar speckle noise filtering,optical-radar image spatio-temporal matching,soil moisture retrieving,soil moisture visualization and exporting.This paper tested the performance of HSRSMEF by combining Sentinel-1,Sentinel-2 images and insitu soil moisture data in the central farmland area of Jilin Province,China.Reconstructed Normalized Difference Vegetation Index(NDVI)based on the Savitzky-Golay algorithm conforms to the crop growth cycle,and its correlation with the original NDVI is about 0.99(P<0.001).The soil moisture accuracy of the random forest model(R 2=0.942,RMSE=0.013 m3/m3)is better than that of the water cloud model(R 2=0.334,RMSE=0.091 m3/m3).HSRSMEF transfers time-consuming offline operations to cloud computing platforms,achieving rapid and simplified high spatial resolution soil moisture mapping.