期刊文献+
共找到917篇文章
< 1 2 46 >
每页显示 20 50 100
基于SE-AdvGAN的图像对抗样本生成方法研究
1
作者 赵宏 宋馥荣 李文改 《计算机工程》 北大核心 2025年第2期300-311,共12页
对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。... 对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。为解决这一问题,基于AdvGAN提出一种改进的图像对抗样本生成方法(SE-AdvGAN)。SE-AdvGAN通过构造SE注意力生成器和SE残差判别器来提高扰动的稀疏性。SE注意力生成器用于提取图像关键特征,限制扰动生成位置,SE残差判别器指导生成器避免生成无关扰动。同时,在SE注意力生成器的损失函数中加入以l_(2)范数为基准的边界损失以限制扰动的幅度,从而提高对抗样本的真实性。实验结果表明,在白盒攻击场景下,SE-AdvGAN相较于现有方法生成的对抗样本扰动稀疏性更高、幅度更小,并且在不同目标模型上均取得了更好的攻击效果,说明SE-AdvGAN生成的高质量对抗样本可以更有效地评估DNN模型的鲁棒性。 展开更多
关键词 对抗样本 生成对抗网络 稀疏扰动 深度神经网络 鲁棒性
在线阅读 下载PDF
Data-augmented landslide displacement prediction using generative adversarial network 被引量:1
2
作者 Qi Ge Jin Li +2 位作者 Suzanne Lacasse Hongyue Sun Zhongqiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4017-4033,共17页
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limit... Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas. 展开更多
关键词 Machine learning(ML) Time series generative adversarial network(gan) Three Gorges reservoir(TGR) Landslide displacement prediction
在线阅读 下载PDF
基于双编码器双解码器GAN的低剂量CT降噪模型
3
作者 上官宏 任慧莹 +3 位作者 张雄 韩兴隆 桂志国 王燕玲 《计算机应用》 北大核心 2025年第2期624-632,共9页
近年来,生成对抗网络(GAN)用于低剂量计算机断层成像(LDCT)图像降噪已经表现出显著的性能优势,成为该领域的研究热点。然而,GAN的生成器对LDCT图像中噪声和伪影分布的感知能力不足,导致网络的降噪性能受限。因此,提出一种基于双编码器... 近年来,生成对抗网络(GAN)用于低剂量计算机断层成像(LDCT)图像降噪已经表现出显著的性能优势,成为该领域的研究热点。然而,GAN的生成器对LDCT图像中噪声和伪影分布的感知能力不足,导致网络的降噪性能受限。因此,提出一种基于双编码器双解码器生成对抗网络(DualED-GAN)的低剂量CT降噪模型。首先,提出由一对编解码器构成伪影像素级特征提取通道,用于估计LDCT中的伪影噪声;其次,提出由另外一对编解码器构成伪影掩码信息提取通道,用于估计伪影的强度和位置信息;最后,采用伪影图像质量标签图辅助估计伪影的掩码信息,可以为伪影像素级特征提取通道提供补充特征,进而提高GAN降噪网络对伪影噪声分布强度的敏感性。实验结果表明,在mayo测试集上与次优模型DESD-GAN(Dual-Encoder-Single-Decoder based Generative Adversarial Network)相比,所提模型的平均峰值信噪比(PSNR)提高了0.3387 dB,平均结构相似性度(SSIM)提高了0.0028。可见,所提模型在伪影抑制、结构保留与模型鲁棒性方面均有更好的表现。 展开更多
关键词 低剂量计算机断层成像 生成对抗网络 编码器 解码器 降噪
在线阅读 下载PDF
A Generative Adversarial Nets Method for Monitoring Data Generation on Aircraft Engines 被引量:1
4
作者 FU Qiang WANG Huawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第4期609-616,共8页
A sufficient sample size of monitoring data becomes a key factor for describing aircraft engines state.Generative adversarial nets(GAN)can be used to expand the sample size based on the existing state monitoring infor... A sufficient sample size of monitoring data becomes a key factor for describing aircraft engines state.Generative adversarial nets(GAN)can be used to expand the sample size based on the existing state monitoring information.In the paper,a GAN model is introduced to design an algorithm for generating the monitoring data of aircraft engines.This feasibility of the method is illustrated by an example.The experimental results demonstrate that the probability density distribution of generated data after a large number of network training iterations is consistent with the probability density distribution of monitoring data.The proposed method also effectively demonstrates the generated monitoring data of aircraft engine are in a reasonable range.The method can effectively solve the problem of inaccurate performance degradation evaluation caused by the small amount of aero?engine condition monitoring data. 展开更多
关键词 generative adversarial nets(gan) aircraft engine condition monitoring monitoring data
在线阅读 下载PDF
基于自编码器GAN数据增强的工业小目标缺陷检测
5
作者 周思聪 向峰 +1 位作者 李红军 左颖 《现代制造工程》 北大核心 2025年第2期101-108,共8页
工业缺陷图像样本是工业产品缺陷检测、分类和分级的基础数据。针对工业缺陷检测目前仍存在复杂环境下的目标检测困难、样本数量不足导致特征提取差等问题,提出了一种预训练的自编码器生成对抗网络。用预训练的自编码器代替基础生成对... 工业缺陷图像样本是工业产品缺陷检测、分类和分级的基础数据。针对工业缺陷检测目前仍存在复杂环境下的目标检测困难、样本数量不足导致特征提取差等问题,提出了一种预训练的自编码器生成对抗网络。用预训练的自编码器代替基础生成对抗网络(GAN)的生成网络,引导生成网络更好地融合数据特征。结合目标图像的特征重新设计一个编码器-解码器损失函数来替换GAN的对抗损失函数。利用钢卷端面缺陷数据集进行试验。试验结果表明,经过改进GAN数据增强后,平均精度均值mAP0.5最高提升了0.118,对单类缺陷的检测准确率最高提升了0.138。 展开更多
关键词 生成对抗网络 工业图像生成 预训练自编码器 缺陷检测
在线阅读 下载PDF
融合过-欠采样与GAN的网络入侵检测方法
6
作者 王秀玉 吴晓鸰 冯永晋 《小型微型计算机系统》 北大核心 2025年第2期449-455,共7页
随着互联网技术的发展,网络数据流量每秒激增,伴随而来更多的安全问题.针对网络入侵数据集类不平衡和数据维度高导致的分类不准确问题,本文提出一种融合过-欠采样和GAN的网络入侵检测方法.采用随机欠采样减少多数类样本数量,以避免欠拟... 随着互联网技术的发展,网络数据流量每秒激增,伴随而来更多的安全问题.针对网络入侵数据集类不平衡和数据维度高导致的分类不准确问题,本文提出一种融合过-欠采样和GAN的网络入侵检测方法.采用随机欠采样减少多数类样本数量,以避免欠拟合问题.同时,通过合成少数类过采样技术合成少数类样本,以降低类不平衡所带来的影响.此外,结合GAN使合成样本更接近真实样本,以解决SMOTE中新合成样本缺乏合理性的问题.最后,集成自编码器,通过降低数据集的维度来减少内存占用,并加速分类模型的训练.在CICIDS2017数据集上进行对比实验,结果表明本文提出的融合过-欠采样和GAN的网络入侵检测方法性能优于其他方法. 展开更多
关键词 网络入侵检测 生成对抗网络 SMOTE 自编码器
在线阅读 下载PDF
Free form deformation and symmetry constraint‐based multimodal brain image registration using generative adversarial nets
7
作者 Xingxing Zhu Mingyue Ding Xuming Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1492-1506,共15页
Multi‐modal brain image registration has been widely applied to functional localisation,neurosurgery and computational anatomy.The existing registration methods based on the dense deformation fields involve too many ... Multi‐modal brain image registration has been widely applied to functional localisation,neurosurgery and computational anatomy.The existing registration methods based on the dense deformation fields involve too many parameters,which is not conducive to the exploration of correct spatial correspondence between the float and reference images.Meanwhile,the unidirectional registration may involve the deformation folding,which will result in the change of topology during registration.To address these issues,this work has presented an unsupervised image registration method using the free form deformation(FFD)and the symmetry constraint‐based generative adversarial networks(FSGAN).The FSGAN utilises the principle component analysis network‐based structural representations of the reference and float images as the inputs and uses the generator to learn the FFD model parameters,thereby producing two deformation fields.Meanwhile,the FSGAN uses two discriminators to decide whether the bilateral registration have been realised simultaneously.Besides,the symmetry constraint is utilised to construct the loss function,thereby avoiding the deformation folding.Experiments on BrainWeb,high grade gliomas,IXI and LPBA40 show that compared with state‐of‐the‐art methods,the FSGAN provides superior performance in terms of visual comparisons and such quantitative indexes as dice value,target registration error and computational efficiency. 展开更多
关键词 Free‐form deformation generative adversarial nets Multi‐modal brain image registration Structural representation Symmetry constraint
在线阅读 下载PDF
Enhanced Panoramic Image Generation with GAN and CLIP Models
8
作者 Shilong Li Qiang Zhao 《Journal of Beijing Institute of Technology》 2025年第1期91-101,共11页
Panoramic images, offering a 360-degree view, are essential in virtual reality(VR) and augmented reality(AR), enhancing realism with high-quality textures. However, acquiring complete and high-quality panoramic textur... Panoramic images, offering a 360-degree view, are essential in virtual reality(VR) and augmented reality(AR), enhancing realism with high-quality textures. However, acquiring complete and high-quality panoramic textures is challenging. This paper introduces a method using generative adversarial networks(GANs) and the contrastive language-image pretraining(CLIP) model to restore and control texture in panoramic images. The GAN model captures complex structures and maintains consistency, while CLIP enables fine-grained texture control via semantic text-image associations. GAN inversion optimizes latent codes for precise texture details. The resulting low dynamic range(LDR) images are converted to high dynamic range(HDR) using the Blender engine for seamless texture blending. Experimental results demonstrate the effectiveness and flexibility of this method in panoramic texture restoration and generation. 展开更多
关键词 panoramic images environment texture generative adversarial networks(gans) contrastive language-image pretraining(CLIP)model blender engine fine-grained control texture generation
在线阅读 下载PDF
基于改进StarGAN网络的多时段红外图像反演算法
9
作者 廖语诗 苏娟 马得草 《火箭军工程大学学报》 2025年第1期21-30,共10页
针对不同时段红外图像成像灰度差异较大的问题,提出了一种基于改进StarGAN网络的多时段红外图像反演算法。该算法基于StarGAN网络对多个图像域之间的映射关系进行统一建模,并结合标签信息约束和选取相应的转换关系,实现从可见光图像到... 针对不同时段红外图像成像灰度差异较大的问题,提出了一种基于改进StarGAN网络的多时段红外图像反演算法。该算法基于StarGAN网络对多个图像域之间的映射关系进行统一建模,并结合标签信息约束和选取相应的转换关系,实现从可见光图像到多时段红外图像的反演;其次,在损失函数中添加风格损失,以丰富生成红外图像的纹理细节,提高图像的整体质量。在自制的可见光/红外数据集上的测试结果表明,改进算法能够生成结构更加清晰、纹理细节更加丰富的多时段红外图像。与同类算法Pix2pix和CycleGAN相比,所提算法的FID(Fréchet Inception Distance)分别减小了约41%和23%,KID(Kernel Inception Distance)分别减小了约82%和40%,表明基于该算法生成的图像与真实红外图像之间具有更高的相似度,生成图像的质量也更好。同时,基于所提算法生成图像的灰度相关匹配准确率也得到了较大提升,验证了所提算法的有效性。 展开更多
关键词 多时段红外图像反演 生成对抗网络 Stargan 风格损失
在线阅读 下载PDF
MACDCGAN的发电机轴承故障诊断方法 被引量:1
10
作者 曹洁 尹浩楠 王进花 《振动与冲击》 EI CSCD 北大核心 2024年第11期227-235,共9页
在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成... 在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成对抗网络(MACDCGAN)的故障诊断方法。通过对采集的一维时序信号进行小波变换增强特征,构建简化结构参数的条件深度卷积生成对抗网络模型生成样本,并在模型中采用Wasserstein距离优化损失函数解决训练过程中存在模式崩塌和梯度消失的缺点;通过添加一个独立的分类器来改进分类模型的兼容性,并在分类器中引入学习率衰减算法增加模型稳定性。试验结果表明,该方法可以有效地提高故障诊断的精度,并且验证了所提模型具有良好的泛化性能。 展开更多
关键词 发电机 特征提取 生成对抗网络(gan) 卷积神经网络(CNN) 故障诊断
在线阅读 下载PDF
基于GAN和MS-ResNet的房颤自动检测模型
11
作者 秦静 韩悦 +3 位作者 王立永 季长清 刘璐 汪祖民 《应用科学学报》 CAS CSCD 北大核心 2024年第1期15-26,共12页
房颤是一种常见的心律失常疾病,针对现有研究工作大多依赖于单尺度信号段而忽略了不同尺度下潜在的互补信息和数据不平衡问题导致诊断性能下降的问题,提出了一种新颖的基于生成对抗网络(generative adversarial network, GAN)和多尺度... 房颤是一种常见的心律失常疾病,针对现有研究工作大多依赖于单尺度信号段而忽略了不同尺度下潜在的互补信息和数据不平衡问题导致诊断性能下降的问题,提出了一种新颖的基于生成对抗网络(generative adversarial network, GAN)和多尺度残差网络(multiscale residual net, MS-ResNet)的房颤自动检测模型,该网络使用GAN合成具有高形态相似性的单导联心电数据来解决数据的隐私和不平衡问题。同时,设计了MS-ResNet特征提取策略,从不同尺度提取不同大小信号段的特征,从而有效地捕捉P波消失和RR间期不规则特征。该模型联合这两种策略不仅为房颤自动检测生成高质量心电图(electrocardiogram,ECG)数据,还可以利用多尺度网格提取不同波之间的时序特征。在PhysioNet Challenge2017公开ECG数据集上以及平衡后的数据集上评估了MS-ResNet的性能,并将其与现有的房颤分类模型进行了比较。实验结果表明,MS-ResNet在平衡后的数据集上平均F1值和精确率分别达到0.914 1和91.56%,与不平衡数据集相比,F1提高了4.5%,精确率提高了3.5%。 展开更多
关键词 心电图 房颤 生成对抗网络 多尺度 自动检测
在线阅读 下载PDF
基于图像小波域自适应干扰的GAN生成人脸反取证
12
作者 陈北京 李玉茹 舒华忠 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期1330-1338,共9页
针对现有生成对抗网络(GAN)生成人脸反取证方法攻击迁移性不强的问题,提出了一个基于图像小波域自适应干扰的GAN生成人脸反取证方法以提升攻击迁移性.该方法通过对GAN生成人脸图像的小波域信息(即图像经过小波分解后的频率分量)施加扰... 针对现有生成对抗网络(GAN)生成人脸反取证方法攻击迁移性不强的问题,提出了一个基于图像小波域自适应干扰的GAN生成人脸反取证方法以提升攻击迁移性.该方法通过对GAN生成人脸图像的小波域信息(即图像经过小波分解后的频率分量)施加扰动以实现其对取证模型的抵抗,并且分别在空域和频域上基于最小可觉察误差(JND)设计自适应扰动阈值,对图像不同像素点位置设置不同的扰动强度,从而增强扰动的人眼不可感知性.此外,还设计了一种数据增强方式对反取证人脸进行数据分布多样性扩充,以进一步提升攻击迁移性.实验结果表明,与6种基线方法相比,所提方法生成的反取证人脸在保证扰动对人眼不可感知前提下具有更强的攻击迁移性. 展开更多
关键词 对抗扰动 gan生成人脸 反取证 离散小波变换(DWT) 最小可觉察误差
在线阅读 下载PDF
Generative Adversarial Networks:Introduction and Outlook 被引量:51
13
作者 Kunfeng Wang Chao Gou +3 位作者 Yanjie Duan Yilun Lin Xinhu Zheng Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期588-598,共11页
Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adver... Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence. 展开更多
关键词 ACP approach adversarial learning generative adversarial networks(gans) generative models parallel intelligence zero-sum game
在线阅读 下载PDF
基于Transformer和GAN的对抗样本生成算法 被引量:3
14
作者 刘帅威 李智 +1 位作者 王国美 张丽 《计算机工程》 CAS CSCD 北大核心 2024年第2期180-187,共8页
对抗攻击与防御是计算机安全领域的一个热门研究方向。针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN。首先利用Transformer强... 对抗攻击与防御是计算机安全领域的一个热门研究方向。针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN。首先利用Transformer强大的视觉表征能力,将其作为重构网络,用于接收干净图像并生成攻击噪声;其次将Transformer重构网络作为生成器,与基于深度卷积网络的鉴别器相结合组成GAN网络架构,提高生成图像的真实性并保证训练的稳定性,同时提出改进的注意力机制Targeted Self-Attention,在训练网络时引入目标标签作为先验知识,指导网络模型学习生成具有特定攻击目标的对抗扰动;最后利用跳转连接将对抗噪声施加在干净样本上,形成对抗样本,攻击目标分类网络。实验结果表明:Trans-GAN算法针对MNIST数据集中2种模型的攻击成功率都达到99.9%以上,针对CIFAR10数据集中2种模型的攻击成功率分别达到96.36%和98.47%,优于目前先进的基于生成式的对抗样本生成方法;相比快速梯度符号法和投影梯度下降法,Trans-GAN算法生成的对抗噪声扰动量更小,形成的对抗样本更加自然,满足人类视觉不易分辨的要求。 展开更多
关键词 深度神经网络 对抗样本 对抗攻击 Transformer模型 生成对抗网络 注意力机制
在线阅读 下载PDF
基于改进MMD-GAN的可再生能源随机场景生成 被引量:2
15
作者 吴艳梅 陈红坤 +3 位作者 陈磊 褚昱麟 高鹏 吴海涛 《电力系统保护与控制》 EI CSCD 北大核心 2024年第19期85-96,共12页
针对可再生能源出力不确定性的准确表征问题,提出了一种基于改进的最大均值差异生成对抗网络(maximum mean discrepancy generative adversarial networks,MMD-GAN)的可再生能源随机场景生成方法。首先,阐述了GAN及MMD-GAN的基本原理,... 针对可再生能源出力不确定性的准确表征问题,提出了一种基于改进的最大均值差异生成对抗网络(maximum mean discrepancy generative adversarial networks,MMD-GAN)的可再生能源随机场景生成方法。首先,阐述了GAN及MMD-GAN的基本原理,提出了MMD-GAN的改进方案,即在MMD-GAN的基础上改进鉴别器损失函数,并采用谱归一化和有界高斯核提升生成器和鉴别器的训练稳定性。然后,设计了基于改进MMD-GAN的可再生能源随机场景生成流程。最后,分析了所提方法在可再生能源随机场景生成中的效果,比较了改进MMD-GAN方法与MMD-GAN方法及典型GAN方法的性能差异。结果表明,改进MMD-GAN方法在生成分布和真实分布的Wasserstein距离上较对比方法降低超过50%,生成的场景精度得到有效提升。 展开更多
关键词 场景生成 最大均值差异 生成对抗网络 可再生能源 数据驱动
在线阅读 下载PDF
Generative Adversarial Network Based Heuristics for Sampling-Based Path Planning 被引量:9
16
作者 Tianyi Zhang Jiankun Wang Max Q.-H.Meng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期64-74,共11页
Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the conf... Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set. 展开更多
关键词 generative adversarial network(gan) optimal path planning robot path planning sampling-based path planning
在线阅读 下载PDF
融合门控变换机制和GAN的低光照图像增强方法 被引量:3
17
作者 何银银 胡静 +1 位作者 陈志泊 张荣国 《计算机工程》 CAS CSCD 北大核心 2024年第2期247-255,共9页
针对低光照图像增强过程中存在的配对图像数据依赖、细节损失严重和噪声放大问题,提出结合门控通道变换机制和生成对抗网络(GAN)的低光照图像增强方法AGR-GAN,该方法可以在没有低/正常光图像对的情况下进行训练。首先,设计特征提取网络... 针对低光照图像增强过程中存在的配对图像数据依赖、细节损失严重和噪声放大问题,提出结合门控通道变换机制和生成对抗网络(GAN)的低光照图像增强方法AGR-GAN,该方法可以在没有低/正常光图像对的情况下进行训练。首先,设计特征提取网络,该网络由多个基于门控通道变换单元的多尺度卷积残差模块构成,以提取输入图像的全局上下文特征和多尺度局部特征信息;然后,在特征融合网络中,采用卷积残差结构将提取的深浅层特征进行充分融合,再引入横向跳跃连接结构,最大程度保留细节特征信息,获得最终的增强图像;最后,引入联合损失函数指导网络训练过程,抑制图像噪声,使增强图像色彩更自然匀称。实验结果表明,该方法在主观视觉分析和客观指标评价方面相较其他算法均具有显著优势,其能有效提高低光照图像的亮度和对比度,减弱图像噪声,增强后的图像更清晰且色彩更真实,峰值信噪比、结构相似度和无参考图像质量评价指标平均可达16.48 dB、0.93和3.37。 展开更多
关键词 低光照图像增强 卷积残差结构 门控通道变换单元 无监督学习 生成对抗网络
在线阅读 下载PDF
General image classification method based on semi-supervised generative adversarial networks 被引量:2
18
作者 Su Lei Xu Xiangyi +1 位作者 Lu Qiyu Zhang Wancai 《High Technology Letters》 EI CAS 2019年第1期35-41,共7页
Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis... Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10. 展开更多
关键词 generative adversarial network(gan) SEMI-SUPERVISED image classification
在线阅读 下载PDF
基于有效注意力和GAN结合的脑卒中EEG增强算法 被引量:1
19
作者 王夙喆 张雪英 +2 位作者 陈晓玉 李凤莲 吴泽林 《计算机工程》 CAS CSCD 北大核心 2024年第8期336-344,共9页
在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引... 在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引入缩放点乘注意力改善样本生成质量,但存储及运算代价往往较大。针对此问题,构建一种基于线性有效注意力的渐进式数据增强算法LESA-CGAN。首先,算法采用双层自编码条件生成对抗网络架构,分别进行脑电标签特征提取及脑电样本生成,并使生成过程逐层精细化;其次,通过在编码部分引入线性有效自注意力(LESA)模块,加强脑电的标签隐层特征提取,并降低网络整体的运算复杂度。消融与对比实验结果表明,在合理的编码层数与生成数据比例下,LESA-CGAN与其他基准方法相比计算资源占用较少,且在样本生成质量指标上实现了10%的性能提升,各频段生成的脑电特征样本均更加自然,同时将病患分类的准确率和敏感度提高到了98.85%和98.79%。 展开更多
关键词 脑卒中 脑电 生成对抗网络 自注意力机制 线性有效自注意力
在线阅读 下载PDF
Ballistic response of armour plates using Generative Adversarial Networks 被引量:1
20
作者 S.Thompson F.Teixeira-Dias +1 位作者 M.Paulino A.Hamilton 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1513-1522,共10页
It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-ba... It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process. 展开更多
关键词 Machine learning generative adversarial Networks gan Terminal ballistics Armour systems
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部