期刊文献+
共找到56,925篇文章
< 1 2 250 >
每页显示 20 50 100
A Genetic Algorithm Approach for Location-Specific Calibration of Rainfed Maize Cropping in the Context of Smallholder Farming in West Africa
1
作者 Moussa Waongo Patrick Laux +2 位作者 Jan Bliefernicht Amadou Coulibaly Seydou B. Traore 《Agricultural Sciences》 2025年第1期89-111,共23页
Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions var... Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions varies significantly from one farmer to another, making it challenging to accurately estimate crop production through crop models. This limitation has implications for the reliability of using crop models as agricultural decision-making support tools. To support decision making in agriculture, an approach combining a genetic algorithm (GA) with the crop model AquaCrop is proposed for a location-specific calibration of maize cropping. In this approach, AquaCrop is used to simulate maize crop yield while the GA is used to derive optimal parameters set at grid cell resolution from various combinations of cultivar parameters and crop management in the process of crop and management options calibration. Statistics on pairwise simulated and observed yields indicate that the coefficient of determination varies from 0.20 to 0.65, with a yield deviation ranging from 8% to 36% across Burkina Faso (BF). An analysis of the optimal parameter sets shows that regardless of the climatic zone, a base temperature of 10˚C and an upper temperature of 32˚C is observed in at least 50% of grid cells. The growing season length and the harvest index vary significantly across BF, with the highest values found in the Soudanian zone and the lowest values in the Sahelian zone. Regarding management strategies, the fertility mean rate is approximately 35%, 39%, and 49% for the Sahelian, Soudano-sahelian, and Soudanian zones, respectively. The mean weed cover is around 36%, with the Sahelian and Soudano-sahelian zones showing the highest variability. The proposed approach can be an alternative to the conventional one-size-fits-all approach commonly used for regional crop modeling. Moreover, it has the potential to explore the performance of cropping strategies to adapt to changing climate conditions. 展开更多
关键词 Smallholder Farming AquaCrop genetics algorithm Optimization MAIZE Burkina Faso
在线阅读 下载PDF
Optimal Planning of Multiple PV-DG in Radial Distribution Systems Using Loss Sensitivity Analysis and Genetic Algorithm
2
作者 A. Elkholy 《Journal of Power and Energy Engineering》 2025年第2期1-22,共22页
This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity fa... This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions. 展开更多
关键词 Photovoltaic Systems Distributed Generation Multiple Allocation and Sizing Power Losses Radial Distribution System genetic algorithm
在线阅读 下载PDF
Probabilistic Assessment of PV-DG for Optimal Multi-Locations and Sizing Using Genetic Algorithm and Sequential-Time Power Flow
3
作者 A. Elkholy 《Journal of Power and Energy Engineering》 2025年第2期23-42,共20页
This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal ... This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results. 展开更多
关键词 Photovoltaic Distributed Generation PROBABILITY genetic algorithm Radial Distribution Systems Time Series Power Flow
在线阅读 下载PDF
Research on Optimization of Microperforated Acoustic Structures Based on Genetic Algorithm
4
作者 Yang Yu Ruilin Mu 《Journal of Electronic Research and Application》 2025年第2期110-116,共7页
Microperforated panels(MPP)are widely used in noise control applications due to their excellent sound absorption performance.However,traditional single-layer MPPs suffer from a narrow sound absorption bandwidth,making... Microperforated panels(MPP)are widely used in noise control applications due to their excellent sound absorption performance.However,traditional single-layer MPPs suffer from a narrow sound absorption bandwidth,making it difficult to meet the demands for broadband sound absorption.To address this limitation,this study proposes a design approach for double-layer MPPs optimized using a genetic algorithm(GA).By optimizing structural parameters such as perforation diameter,panel thickness,perforation ratio,and cavity depth,the sound absorption performance of the double-layer MPP is significantly enhanced.The results demonstrate that the optimized double-layer MPP achieves an average sound absorption coefficient of 0.71 across the 100-5000 Hz frequency range,with a peak absorption coefficient exceeding 0.8 at 500 Hz,outperforming conventional sound-absorbing products of the same category. 展开更多
关键词 Microperforated panels genetic algorithm SOUND-ABSORPTION
在线阅读 下载PDF
Sparse optimization of planar radio antenna arrays using a genetic algorithm
5
作者 Jiarui Di Liang Dong Wei He 《Astronomical Techniques and Instruments》 2025年第2期100-110,共11页
Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such ... Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems. 展开更多
关键词 Planar antenna array Sparse optimization genetic algorithm Wide-angle scanning
在线阅读 下载PDF
Cat Swarm Algorithm Generated Based on Genetic Programming Framework Applied in Digital Watermarking
6
作者 Shu-Chuan Chu Libin Fu +2 位作者 Jeng-Shyang Pan Xingsi Xue Min Liu 《Computers, Materials & Continua》 2025年第5期3135-3163,共29页
Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programm... Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world problems.This paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human intervention.Partial modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the algorithm.By designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update formula.The Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the CSO.To validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark suite.Furthermore,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking process.The experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency. 展开更多
关键词 Cat swarm algorithm genetic programming digital watermarking update mode mode generation framework
在线阅读 下载PDF
Identification and Prediction of Key Technologies in Ginsenosides Based on Genetic Knowledge Persistence Algorithm
7
作者 Li Qian Zhang Wenfeng Yuan Hongmei 《Asian Journal of Social Pharmacy》 2025年第1期68-79,共12页
Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algo... Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algorithm(GKPA).Methods The global ginsenoside invention authorized patents were used as the data source to construct a ginsenoside patent self-citation network,and to identify high knowledge persistent patents(HKPP)of ginsenoside technology based on the GKPA,and extract its high knowledge persistence main path(HKPMP).Finally,the genetic forward and backward path(GFBP)was used to search the nodes on the main path,and draw the genetic forward and backward main path(GFBMP)of ginsenoside technology.Results and Conclusion The algorithm was applied to the field of ginsenosides.The research results show the milestone patents in ginsenosides technology and the main evolution process of three key technologies,which points out the future direction for the technological development of ginsenosides.The results obtained by this algorithm are more interpretable,comprehensive and scientific. 展开更多
关键词 ginsenoside genetic knowledge persistence algorithm(GKPA) high knowledge persistence patent(HKPP) genetic forward and backward path(GFBP) main path analysis
在线阅读 下载PDF
SFGA-CPA: A Novel Screening Correlation Power Analysis Framework Based on Genetic Algorithm
8
作者 Jiahui Liu Lang Li +1 位作者 Di Li Yu Ou 《Computers, Materials & Continua》 SCIE EI 2024年第6期4641-4657,共17页
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de... Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods. 展开更多
关键词 Side-channel analysis correlation power analysis genetic algorithm CROSSOVER MUTATION
在线阅读 下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
9
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
在线阅读 下载PDF
FPGA PLACEMENT OPTIMIZATION BY TWO-STEP UNIFIED GENETIC ALGORITHM AND SIMULATED ANNEALING ALGORITHM 被引量:6
10
作者 Yang Meng A.E.A. Almaini Wang Pengjun 《Journal of Electronics(China)》 2006年第4期632-636,共5页
Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it... Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool. 展开更多
关键词 genetic algorithm (ga Simulated Annealing (SA) PLACEMENT FPga EDA
在线阅读 下载PDF
Genetic algorithm assisted meta-atom design for high-performance metasurface optics 被引量:1
11
作者 Zhenjie Yu Moxin Li +9 位作者 Zhenyu Xing Hao Gao Zeyang Liu Shiliang Pu Hui Mao Hong Cai Qiang Ma Wenqi Ren Jiang Zhu Cheng Zhang 《Opto-Electronic Science》 2024年第9期15-28,共14页
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves... Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics. 展开更多
关键词 metasurface metalens Bessel beam metahologram genetic algorithm
在线阅读 下载PDF
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
12
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(NSgaII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
A Genetic Algorithm-Based Optimized Transfer Learning Approach for Breast Cancer Diagnosis
13
作者 Hussain AlSalman Taha Alfakih +2 位作者 Mabrook Al-Rakhami Mohammad Mehedi Hassan Amerah Alabrah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2575-2608,共34页
Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,integral for early detection and effective treatment.While deep learning has significantly advanced the analy... Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,integral for early detection and effective treatment.While deep learning has significantly advanced the analysis of mammographic images,challenges such as low contrast,image noise,and the high dimensionality of features often degrade model performance.Addressing these challenges,our study introduces a novel method integrating Genetic Algorithms(GA)with pre-trained Convolutional Neural Network(CNN)models to enhance feature selection and classification accuracy.Our approach involves a systematic process:first,we employ widely-used CNN architectures(VGG16,VGG19,MobileNet,and DenseNet)to extract a broad range of features from the Medical Image Analysis Society(MIAS)mammography dataset.Subsequently,a GA optimizes these features by selecting the most relevant and least redundant,aiming to overcome the typical pitfalls of high dimensionality.The selected features are then utilized to train several classifiers,including Linear and Polynomial Support Vector Machines(SVMs),K-Nearest Neighbors,Decision Trees,and Random Forests,enabling a robust evaluation of the method’s effectiveness across varied learning algorithms.Our extensive experimental evaluation demonstrates that the integration of MobileNet and GA significantly improves classification accuracy,from 83.33%to 89.58%,underscoring the method’s efficacy.By detailing these steps,we highlight the innovation of our approach which not only addresses key issues in breast cancer imaging analysis but also offers a scalable solution potentially applicable to other domains within medical imaging. 展开更多
关键词 Deep learning convolution neural network(CNN) support vector machine(SVM) genetic algorithmic(ga) breast cancer an optimized smart diagnosis
在线阅读 下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
14
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure genetic algorithm SURVIVABILITY VULNERABILITY
在线阅读 下载PDF
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
15
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 Underground coal mining Roof fall Fuzzy logic genetic algorithm
在线阅读 下载PDF
Optimized parameters of downhole all-metal PDM based on genetic algorithm
16
作者 Jia-Xing Lu Ling-Rong Kong +2 位作者 Yu Wang Chao Feng Yu-Lin Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2663-2676,共14页
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,... Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology. 展开更多
关键词 Positive displacement motor genetic algorithm Profile optimization Matlab programming Overflow area
在线阅读 下载PDF
MOALG: A Metaheuristic Hybrid of Multi-Objective Ant Lion Optimizer and Genetic Algorithm for Solving Design Problems
17
作者 Rashmi Sharma Ashok Pal +4 位作者 Nitin Mittal Lalit Kumar Sreypov Van Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2024年第3期3489-3510,共22页
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ... This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms. 展开更多
关键词 Multi-objective optimization genetic algorithm ant lion optimizer METAHEURISTIC
在线阅读 下载PDF
New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications
18
作者 Shimaa M.Amer Ashraf A.M.Khalaf +3 位作者 Amr H.Hussein Salman A.Alqahtani Mostafa H.Dahshan Hossam M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2749-2767,共19页
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t... Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL. 展开更多
关键词 Array synthesis convolution process genetic algorithm(ga) half power beamwidth(HPBW) linear antenna array(LAA) side lobe level(SLL) quality of service(QOS)
在线阅读 下载PDF
Surface wave inversion with unknown number of soil layers based on a hybrid learning procedure of deep learning and genetic algorithm
19
作者 Zan Zhou Thomas Man-Hoi Lok Wan-Huan Zhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期345-358,共14页
Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known bef... Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion. 展开更多
关键词 surface wave inversion analysis shear-wave velocity profile deep neural network genetic algorithm
在线阅读 下载PDF
Optimization of magnetic field design for Hall thrusters based on a genetic algorithm
20
作者 谭睿 杭观荣 王平阳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期82-92,共11页
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er... Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster. 展开更多
关键词 magnetic field design genetic algorithm divergence angle erosion of discharge channel convergent magnetic field
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部