全球导航卫星系统反射信号遥感技术(global navigation satellite system reflectometry,GNSS-R)地基功率测量应用中,信号接收天线对于背向同极化和各向交叉极化信号的抑制并不理想.为了分析天线方向性对于目标信号相关功率测量的影响,...全球导航卫星系统反射信号遥感技术(global navigation satellite system reflectometry,GNSS-R)地基功率测量应用中,信号接收天线对于背向同极化和各向交叉极化信号的抑制并不理想.为了分析天线方向性对于目标信号相关功率测量的影响,以右旋圆极化(right hand circular polarized,RHCP)直射信号接收天线和左旋圆极化(left hand circular polarized,LHCP)反射信号接收天线为例,建立了实际天线接收信号的相关功率模型,确定了实际信号相关功率的概率分布以及数字特征,在仿真信号相关功率的数字特征的基础上计算了相关功率的相对偏差和离散系数并进行了分析.结果表明:天线方向性的不理想会造成目标信号相关功率测量误差,RHCP天线方向性仅在低卫星高度角范围内对直射目标信号相关功率测量有较大影响,而LHCP天线方向性在整个卫星高度角变化范围内都对反射目标信号相关功率测量有显著影响.展开更多
Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)sig...Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.展开更多
Soil moisture is a key parameter in agricultural irrigation. The L band(1.58GHz) on board global position system (GPS) satellite is well suited for monitoring the change of soil moisture. In order to investigate t...Soil moisture is a key parameter in agricultural irrigation. The L band(1.58GHz) on board global position system (GPS) satellite is well suited for monitoring the change of soil moisture. In order to investigate the potential of retrieving soil moisture using the L-band GPS bistatic radar, this paper analyzed a retrieval method by using field experiment data. In order to investigate the relation- ship between the soil moisture ( corresponding roughly to the 0 - 5cm top soil layer) and the signal- to-noise ratio (PT-S-R) to the direct GPS signal-to-noise ratio (Pd_sNR), an experiment was conducted in Hulunber grassland of China in 2009 and 2011. Six field sites in the soil moisture experiment were utilized to analyze the relationship between soil moisture and the ratio of Pr-SNR to Pd-SN~ and the square of correlation coefficient was about 0.9 when the surface type was known and the elevation angle of the satellite ranged from 65 to 85 degrees approximately. The analysis shows that ratio of Pr-SNR to Pd-SNR can be used to monitor the soil moisture, because the ratio of Pr-SVR to Pd-SNR maxi- mized the elimination of the influence of different signals from different GPS satellites. The estimation accuracy could be improved if we make full use of the empirical knowledge on elevation angles of GPS satellites and ground roughness of different surface types.展开更多
文摘全球导航卫星系统反射信号遥感技术(global navigation satellite system reflectometry,GNSS-R)地基功率测量应用中,信号接收天线对于背向同极化和各向交叉极化信号的抑制并不理想.为了分析天线方向性对于目标信号相关功率测量的影响,以右旋圆极化(right hand circular polarized,RHCP)直射信号接收天线和左旋圆极化(left hand circular polarized,LHCP)反射信号接收天线为例,建立了实际天线接收信号的相关功率模型,确定了实际信号相关功率的概率分布以及数字特征,在仿真信号相关功率的数字特征的基础上计算了相关功率的相对偏差和离散系数并进行了分析.结果表明:天线方向性的不理想会造成目标信号相关功率测量误差,RHCP天线方向性仅在低卫星高度角范围内对直射目标信号相关功率测量有较大影响,而LHCP天线方向性在整个卫星高度角变化范围内都对反射目标信号相关功率测量有显著影响.
基金The National Natural Science Foundation of China under contract No.41371355the Director Fund Project of Institute of Remote Sensing and Digital Earth of CAS under contract No.Y6SJ0600CX
文摘Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.
基金Supported by the National Key Basic Research Program of China(No.2010CB951503,2013BAC03B00)
文摘Soil moisture is a key parameter in agricultural irrigation. The L band(1.58GHz) on board global position system (GPS) satellite is well suited for monitoring the change of soil moisture. In order to investigate the potential of retrieving soil moisture using the L-band GPS bistatic radar, this paper analyzed a retrieval method by using field experiment data. In order to investigate the relation- ship between the soil moisture ( corresponding roughly to the 0 - 5cm top soil layer) and the signal- to-noise ratio (PT-S-R) to the direct GPS signal-to-noise ratio (Pd_sNR), an experiment was conducted in Hulunber grassland of China in 2009 and 2011. Six field sites in the soil moisture experiment were utilized to analyze the relationship between soil moisture and the ratio of Pr-SNR to Pd-SN~ and the square of correlation coefficient was about 0.9 when the surface type was known and the elevation angle of the satellite ranged from 65 to 85 degrees approximately. The analysis shows that ratio of Pr-SNR to Pd-SNR can be used to monitor the soil moisture, because the ratio of Pr-SVR to Pd-SNR maxi- mized the elimination of the influence of different signals from different GPS satellites. The estimation accuracy could be improved if we make full use of the empirical knowledge on elevation angles of GPS satellites and ground roughness of different surface types.