期刊文献+
共找到2,079篇文章
< 1 2 104 >
每页显示 20 50 100
A Grid-based Graph Data Model for Pedestrian Route Analysis in a Micro-spatial Environment
1
作者 Yi-Quan Song Lei Niu +1 位作者 Long He Rui Wang 《International Journal of Automation and computing》 EI CSCD 2016年第3期296-304,共9页
Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accur... Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accurately, the concept of a grid is presented, and grid-based methods for modeling geospatial objects are described. The semantic constitution of a building environment and the methods for modeling rooms, corridors, and staircases with grid objects are described. Based on the topology relationship between grid objects, a grid-based graph for a building environment is presented, and the corresponding route algorithm for pedestrians is proposed. The main advantages of the graph model proposed in this paper are as follows: 1) consideration of both semantic and geometric information, 2) consideration of the need for accurate geometric representation of the micro-spatial environment and the efficiency of pedestrian route analysis, 3) applicability of the graph model to route analysis in both static and dynamic environments, and 4) ability of the multi-hierarchical route analysis to integrate the multiple levels of pedestrian decision characteristics, from the high to the low, to determine the optimal path. 展开更多
关键词 graph data model route analysis PEDESTRIAN micro-spatiM environment building.
原文传递
Modeling and application of marketing and distribution data based on graph computing
2
作者 Kai Xiao Daoxing Li +1 位作者 Xiaohui Wang Pengtian Guo 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期448-460,共13页
Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to dist... Integrating marketing and distribution businesses is crucial for improving the coordination of equipment and the efficient management of multi-energy systems.New energy sources are continuously being connected to distribution grids;this,however,increases the complexity of the information structure of marketing and distribution businesses.The existing unified data model and the coordinated application of marketing and distribution suffer from various drawbacks.As a solution,this paper presents a data model of"one graph of marketing and distribution"and a framework for graph computing,by analyzing the current trends of business and data in the marketing and distribution fields and using graph data theory.Specifically,this work aims to determine the correlation between distribution transformers and marketing users,which is crucial for elucidating the connection between marketing and distribution.In this manner,a novel identification algorithm is proposed based on the collected data for marketing and distribution.Lastly,a forecasting application is developed based on the proposed algorithm to realize the coordinated prediction and consumption of distributed photovoltaic power generation and distribution loads.Furthermore,an operation and maintenance(O&M)knowledge graph reasoning application is developed to improve the intelligent O&M ability of marketing and distribution equipment. 展开更多
关键词 Marketing and distribution connection graph data graph computing Knowledge graph data model
在线阅读 下载PDF
Efficient Publication of Distributed and Overlapping Graph Data Under Differential Privacy
3
作者 Xu Zheng Lizong Zhang +1 位作者 Kaiyang Li Xi Zeng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期235-243,共9页
Graph data publication has been considered as an important step for data analysis and mining.Graph data,which provide knowledge on interactions among entities,can be locally generated and held by distributed data owne... Graph data publication has been considered as an important step for data analysis and mining.Graph data,which provide knowledge on interactions among entities,can be locally generated and held by distributed data owners.These data are usually sensitive and private,because they may be related to owners’personal activities and can be hijacked by adversaries to conduct inference attacks.Current solutions either consider private graph data as centralized contents or disregard the overlapping of graphs in distributed manners.Therefore,this work proposes a novel framework for distributed graph publication.In this framework,differential privacy is applied to justify the safety of the published contents.It includes four phases,i.e.,graph combination,plan construction sharing,data perturbation,and graph reconstruction.The published graph selection is guided by one data coordinator,and each graph is perturbed carefully with the Laplace mechanism.The problem of graph selection is formulated and proven to be NP-complete.Then,a heuristic algorithm is proposed for selection.The correctness of the combined graph and the differential privacy on all edges are analyzed.This study also discusses a scenario without a data coordinator and proposes some insights into graph publication. 展开更多
关键词 graph data distributed data publication differential privacy
原文传递
A Secure Microgrid Data Storage Strategy with Directed Acyclic Graph Consensus Mechanism
4
作者 Jian Shang Runmin Guan Wei Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2609-2626,共18页
The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to ... The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks. 展开更多
关键词 MICROGRID data security storage node trust degree directed acyclic graph data structure consensus mechanism secure multi-party computing blockchain
在线阅读 下载PDF
Constructing Three-Dimension Space Graph for Outlier Detection Algorithms in Data Mining 被引量:1
5
作者 ZHANG Jing 1,2 , SUN Zhi-hui 1 1.Department of Computer Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China 2.Department of Electricity and Information Engineering, Jiangsu University, Zhenjiang 212001, Jiangsu, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期585-589,共5页
Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional sp... Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery. 展开更多
关键词 OUTLIER DETECTION three-dimensional space graph data mining
在线阅读 下载PDF
Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model 被引量:1
6
作者 FANG Chcng LIU Jun LEI Zhenming 《China Communications》 SCIE CSCD 2014年第12期13-25,共13页
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap... With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods. 展开更多
关键词 cloud computing massive data graph model web usage mining
在线阅读 下载PDF
Graph Regularized L_p Smooth Non-negative Matrix Factorization for Data Representation 被引量:10
7
作者 Chengcai Leng Hai Zhang +2 位作者 Guorong Cai Irene Cheng Anup Basu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第2期584-595,共12页
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ... This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods. 展开更多
关键词 data clustering dimensionality reduction graph REGULARIZATION LP SMOOTH non-negative matrix factorization(SNMF)
在线阅读 下载PDF
A Graph Drawing Algorithm for Visualizing Multivariate Categorical Data
8
作者 HUANG Jingwei HUANG Jie 《Wuhan University Journal of Natural Sciences》 CAS 2007年第2期239-242,共4页
In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify pat... In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify patterns, trends and relationship within the data. A mathematical model for the graph layout problem is deduced and a spectral graph drawing algorithm for visualizing multivariate categorical data is proposed. The experiments show that the drawings by the algorithm well capture the structures of multivariate categorical data and the computing speed is fast. 展开更多
关键词 multivariate categorical data graph graph drawing ALGORITHMS
在线阅读 下载PDF
A graph-based sliding window multi-join over data stream 被引量:1
9
作者 ZHANG Liang Byeong-Seob You +2 位作者 GE Jun-wei LIU Zhao-hong Hae-Young Bae 《重庆邮电大学学报(自然科学版)》 2007年第3期362-366,共5页
Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used fo... Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment. 展开更多
关键词 数据流 查询优化 图论 可调整窗口
在线阅读 下载PDF
Decomposition of Graphs Representing the Contents of Multimedia Data
10
作者 Hochin Teruhisa 《通讯和计算机(中英文版)》 2010年第4期43-49,共7页
关键词 多媒体内容 分解图 数据模型 多媒体数据 递归调用 火焰传播 实例 递归图
在线阅读 下载PDF
Extracting multiple layers from data having graph structures
11
作者 ITOKAWA Yuko UCHIDA Tomoyuki NAKAMURA Yasuaki 《重庆邮电学院学报(自然科学版)》 2004年第5期149-155,共7页
Much data such as geometric image data and drawings have graph structures. Such data are called graph structured data. In order to manage efficiently such graph structured data, we need to analyze and abstract graph s... Much data such as geometric image data and drawings have graph structures. Such data are called graph structured data. In order to manage efficiently such graph structured data, we need to analyze and abstract graph structures of such data. The purpose of this paper is to find knowledge representations which indicate plural abstractions of graph structured data. Firstly, we introduce a term graph as a graph pattern having structural variables, and a substitution over term graphs which is graph rewriting system. Next, for a graph G, we define a multiple layer ( g,(θ 1,…,θ k )) of G as a pair of a term graph g and a list of k substitutions θ 1,…,θ k such that G can be obtained from g by applying substitutions θ 1,…,θ k to g. In the same way, for a set S of graphs, we also define a multiple layer for S as a pair ( D,Θ ) of a set D of term graphs and a list Θ of substitutions. Secondly, for a graph G and a set S of graphs, we present effective algorithms for extracting minimal multiple layers of G and S which give us stratifying abstractions of G and S, respectively. Finally, we report experimental results obtained by applying our algorithms to both artificial data and drawings of power plants which are real world data. 展开更多
关键词 图表结构 最小多层结构 几何图象数据 GIS
在线阅读 下载PDF
面向临床的药物关系知识图谱设计与应用
12
作者 彭坤 冷金昌 +3 位作者 吴欢 肖瑶 王金玲 孙晓玮 《中国数字医学》 2025年第1期97-105,共9页
为提高临床用药的有效性和安全性,本研究综合运用知识结构化抽取、知识存储、知识融合等技术,整合了多源异构性的临床前药学研究数据,构建了药物-药物相互作用(DDI)知识图谱。该知识图谱支持基于本体公理和图结构规则的知识推理业务,可... 为提高临床用药的有效性和安全性,本研究综合运用知识结构化抽取、知识存储、知识融合等技术,整合了多源异构性的临床前药学研究数据,构建了药物-药物相互作用(DDI)知识图谱。该知识图谱支持基于本体公理和图结构规则的知识推理业务,可辅助挖掘深层的DDI关系,并推测尚未经研究证实的潜在DDI关系。基于Neo4j平台搭建了药学知识图谱应用系统,实现了可视化的DDI关联知识查询和DDI风险等级预警,可帮助医生快速、准确、便捷地获取DDI知识,为精准用药提供有效的数据支撑。该系统可与医生工作站相结合,是对药学知识图谱应用于临床的技术探索。 展开更多
关键词 药物-药物相互作用 知识图谱 药研数据 药物不良反应
在线阅读 下载PDF
免疫异常数据的金属回流双极直流配电线路状态估计保护方法
13
作者 曾琦 曾维刚 +4 位作者 廖建权 王少雄 郑宗生 王渝红 周念成 《电力自动化设备》 北大核心 2025年第1期16-24,共9页
实际工程中的量测可能存在异常数据干扰,增加保护误动的风险。为此,基于模型匹配的思想,提出一种免疫异常数据的直流配电线路状态估计保护方法。考虑金属回流双极直流线路的极间耦合,建立线路的精细化等值模型。据此得到系统的量测方程... 实际工程中的量测可能存在异常数据干扰,增加保护误动的风险。为此,基于模型匹配的思想,提出一种免疫异常数据的直流配电线路状态估计保护方法。考虑金属回流双极直流线路的极间耦合,建立线路的精细化等值模型。据此得到系统的量测方程,并根据二次积分法将其离散化以便于求解。对于可能存在的异常数据问题,提出基于窗口图傅里叶变换对数据进行预处理,将数据视为图信号并赋予“频率”的概念,通过提取低频信号达到剔除随机脉冲等高频异常数据的目的。基于递推最小二乘算法对预处理后的状态估计模型进行求解,根据估计模型和实测模型的匹配度构建保护判据,实现区内和区外故障的识别。仿真结果表明,该方法可快速、准确识别区内故障,并有效避免异常数据干扰,同时具有较强的耐高阻、抗通信延时等性能。 展开更多
关键词 直流配电 线路保护 异常数据 图傅里叶变换 状态估计 递推最小二乘
在线阅读 下载PDF
古籍文献通用知识模型研究与设计
14
作者 陈涛 赵晓飞 +1 位作者 杨鑫 林立信 《信息资源管理学报》 2025年第1期139-153,共15页
我国拥有卷帙浩繁的古籍文献,传统的古籍组织与管理方式实现了古籍资源从“藏”到“用”的转变,但“裸资源”越来越难满足数智时代的古籍利用需要。文章考察分析了古籍文献知识组织可复用本体模型,并梳理了古籍文献知识建模视角与思路,... 我国拥有卷帙浩繁的古籍文献,传统的古籍组织与管理方式实现了古籍资源从“藏”到“用”的转变,但“裸资源”越来越难满足数智时代的古籍利用需要。文章考察分析了古籍文献知识组织可复用本体模型,并梳理了古籍文献知识建模视角与思路,从形式特征和内容特征两个维度提出了古籍文献通用知识模型五层框架结构。为验证模型可用性,文章以《永乐大典》“湖”字册为例,构建关联数据集,探索融合关联数据的古籍文献知识图谱,实现了知识聚合与知识发现。本文立足古籍整体,构建了古籍文献通用知识组织模型,为古籍知识的关联呈现、传播共享和智慧应用提供了可选路径。 展开更多
关键词 古籍 本体构建 知识图谱 关联数据 永乐大典
在线阅读 下载PDF
知识-能力递进式阶梯模式的数据结构课程教学探索
15
作者 袁健 欧广宇 曹春萍 《计算机时代》 2025年第3期55-59,共5页
按照高校对学生能力培养的要求,提出了知识-能力递进式阶梯教学思维模型。该模型依据点(知识点)、线(知识链条)、面(知识图谱)的逻辑架构进行知识阶梯教学设计,配合线上线下混合式教学、类比案例式教学、AI辅助教学等多种教学手段,并结... 按照高校对学生能力培养的要求,提出了知识-能力递进式阶梯教学思维模型。该模型依据点(知识点)、线(知识链条)、面(知识图谱)的逻辑架构进行知识阶梯教学设计,配合线上线下混合式教学、类比案例式教学、AI辅助教学等多种教学手段,并结合合理的激励与过程化考核方案,助力学生在学习和应用能力方面实现阶梯式跃升。该模型通过在数据结构课程中的教学探索,取得了良好的教学效果。 展开更多
关键词 知识链条 知识图谱 递进式能力培养 数据结构 教学探索
在线阅读 下载PDF
数据要素价值共创领域知识图谱可视化研究
16
作者 李国英 孙新茹 赵需要 《中国发明与专利》 2025年第3期4-10,共7页
[目的/意义]本文旨在分析数据要素价值共创领域的研究热点、特征及发展趋势,探索该领域的核心研究主题及其演变方向。[方法/过程]通过对CNKI数据库1164篇相关文献的统计分析,利用CiteSpace软件绘制可视化知识图谱,涵盖文献量、作者合作... [目的/意义]本文旨在分析数据要素价值共创领域的研究热点、特征及发展趋势,探索该领域的核心研究主题及其演变方向。[方法/过程]通过对CNKI数据库1164篇相关文献的统计分析,利用CiteSpace软件绘制可视化知识图谱,涵盖文献量、作者合作关系、发文机构和关键词等多个维度,进行综合分析。[结果/结论 ]本研究表明,数据要素价值共创已成为数字经济中的重要领域,研究机构间合作较为薄弱,且研究内容缺乏有效的横向交流。研究热点集中在价值共创、协同创新和价值链优化。未来的研究将聚焦于价值共创机制与实现,推动技术创新与跨部门合作,政策支持和企业参与将促进数据要素的全面价值共创,因此本研究不仅为该领域的学术研究提供了新视角,也为实践中如何推动数据要素的共享与协同价值创造提供了理论指导。 展开更多
关键词 CITESPACE 价值共创 数据要素 知识图谱
在线阅读 下载PDF
图对比学习研究进展
17
作者 吴国栋 吴贞畅 +2 位作者 王雪妮 胡全兴 秦辉 《小型微型计算机系统》 北大核心 2025年第1期44-54,共11页
图对比学习可以提取无标注数据自身信息作为自监督信号指导模型训练,并帮助缓解图神经网络对标签数据的依赖及结构不公平等问题,已成为图神经网络领域的研究热点.本文从数据增广方式、样本对构造、对比学习粒度3个方面对现有图对比学习... 图对比学习可以提取无标注数据自身信息作为自监督信号指导模型训练,并帮助缓解图神经网络对标签数据的依赖及结构不公平等问题,已成为图神经网络领域的研究热点.本文从数据增广方式、样本对构造、对比学习粒度3个方面对现有图对比学习研究进行了深入探讨,分析了已有不同图对比学习研究方法各自的优点与不足.在此基础上,指出了现有图对比学习研究存在的问题,并提出了自适应性图对比学习、上下文图对比学习、动态图对比学习、超图对比学习、因果推断图对比学习、无负样本图对比学习及基于大语言模型的图对比学习等未来图对比学习的研究方向. 展开更多
关键词 图对比学习 研究进展 数据增广 样本对 对比粒度
在线阅读 下载PDF
历史报纸数据资源战争事件知识图谱构建研究——以“人民日报”(1946—1949)战争事件为例
18
作者 邓君 钟楚依 胡程杰 《现代情报》 北大核心 2025年第3期146-165,共20页
[目的/意义]在文化大数据战略背景下,推动历史报纸数据资源全面深度开发可助力文化大数据体系的搭建和完善。[方法/过程]本文以“人民日报(1946—1949)”战争事件为例,构建历史报纸数据资源战争事件本体,自动抽取战争事件及其组成要素,... [目的/意义]在文化大数据战略背景下,推动历史报纸数据资源全面深度开发可助力文化大数据体系的搭建和完善。[方法/过程]本文以“人民日报(1946—1949)”战争事件为例,构建历史报纸数据资源战争事件本体,自动抽取战争事件及其组成要素,结合所构本体模型和抽取数据绘制历史报纸数据资源战争事件知识图谱并完成语义查询。[结果/结论]实现历史报纸数据资源战争事件知识单元结构层次、特征内涵及联通关系形式化、规范化、细粒度地表征和组织,为逐步构建起领域知识库和提供精细化知识服务奠定基础,为历史报纸研究开发提供新视角和新思路,助力中华文化保护与传承。 展开更多
关键词 历史报纸 数据资源 战争事件 知识图谱 人民日报
在线阅读 下载PDF
基于开源科技项目数据的多模态知识图谱构建研究
19
作者 窦永香 解哲辉 汤晓芳 《情报理论与实践》 北大核心 2025年第3期32-40,共9页
[目的/意义]在全球科技竞争日益激烈的背景下,开源情报作为研究和预测世界科技发展趋势的重要工具,对于科技情报工作的重要性愈发凸显。科技项目数据作为科技情报的重要数据来源和分析对象,呈现出多源、多模态的特性,对其进行深度分析... [目的/意义]在全球科技竞争日益激烈的背景下,开源情报作为研究和预测世界科技发展趋势的重要工具,对于科技情报工作的重要性愈发凸显。科技项目数据作为科技情报的重要数据来源和分析对象,呈现出多源、多模态的特性,对其进行深度分析和挖掘,并服务于管理与决策活动,是新时期科技资源高效利用的重要途径。[方法/过程]文章将情报工作流程与多模态知识图谱构建流程相融合,提出了基于开源科技项目数据的多模态知识图谱构建框架,包含需求分析、开源情报采集、多模态科技项目知识图谱构建以及知识图谱服务4个关键环节,并详细讨论了每个环节中的核心内容。[结果/结论]以美国情报高级研究计划局(IARPA)公开项目的多模态数据为例,遵循上述框架构建了包含项目、机构、人员、技术、文档、图像、视频7类实体及多种关系的多模态知识图谱。未来,可将多模态知识图谱与问答系统、推荐系统相结合,为科技管理决策提供更加智能化的情报服务。 展开更多
关键词 开源情报 科技项目 多模态知识图谱 科技情报 数据挖掘 科技管理
在线阅读 下载PDF
基于多通道图卷积神经网络的地海杂波分类方法
20
作者 李灿 王增福 +1 位作者 张效宣 潘泉 《雷达学报(中英文)》 北大核心 2025年第2期322-337,共16页
地海杂波分类是提升天波超视距雷达目标定位精度的关键技术,其核心是判别距离多普勒(RD)图中每个方位-距离单元背景源自陆地或海洋的过程。基于传统深度学习的地海杂波分类方法需海量高质量且类别均衡的有标签样本,训练时间长,费效比高... 地海杂波分类是提升天波超视距雷达目标定位精度的关键技术,其核心是判别距离多普勒(RD)图中每个方位-距离单元背景源自陆地或海洋的过程。基于传统深度学习的地海杂波分类方法需海量高质量且类别均衡的有标签样本,训练时间长,费效比高;此外,其输入为单个方位-距离单元杂波,未考虑样本的类内和类间信息,导致模型性能不佳。针对上述问题,该文通过分析相邻方位-距离单元之间的相关性,将地海杂波数据由欧氏空间转换为非欧氏空间中的图数据,引入样本之间的关系,并提出一种基于多通道图卷积神经网络(MC-GCN)的地海杂波分类方法。MC-GCN将图数据由单通道分解为多通道,每个通道只包含一种类型的边和一个权重矩阵,通过约束节点信息聚合的过程,能够有效缓解由异质性造成的节点属性误判。该文选取不同季节、不同时刻、不同探测区域RD图,依据雷达参数、数据特性和样本比例,构建包含12种不同场景的地海杂波原始数据集和36种不同配置的地海杂波稀缺数据集,并对MC-GCN的有效性进行验证。通过与最先进的地海杂波分类方法进行比较,该文所提出的MC-GCN在上述数据集中均表现最优,其分类准确率不低于92%。 展开更多
关键词 天波超视距雷达 地海杂波分类 图数据 图卷积神经网络 异质性
在线阅读 下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部