Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significant...Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significantly affected by the flow disturbance caused by aero-engine acceleration and deceleration. This would reduce the credibility of ASTF’s test results for the aero-engine. Therefore, first, this paper proposes a feedforward compensation-based L1 adaptive control method for ASTF to address this problem. The baseline controller is first designed based on ideal uncoupled closed-loop dynamics to achieve dynamic decoupling. Then, L1 adaptive control is adopted to deal with various uncertainties and ensure good control performance. To further enhance the anti-disturbance performance, a feedforward strategy based on disturbance prediction is designed in the L1 adaptive control framework to compensate for the unmatched flow disturbance, which cannot be measured directly. In addition, this strategy takes into account the effects of actuator dynamics. With this method, the feedforward term can be determined from the nominal model parameters despite uncertainties. Finally, to demonstrate the effectiveness of the proposed method, various comparative experiments are performed on a hardware-in-the-loop system of ASTF. The experimental results show that the proposed method possesses excellent tracking performance, anti-disturbance performance and robustness.展开更多
Based on traditional continuous control strategy for Continuously Variable Transmission(CVT)ratio,according to the principles of shift control strategy for stepped automatic transmission,the influences of throttle ope...Based on traditional continuous control strategy for Continuously Variable Transmission(CVT)ratio,according to the principles of shift control strategy for stepped automatic transmission,the influences of throttle opening and external resistance or vehicle speed on CVT ratio control are analyzed on bumpy road.Under the same variation of external resistance condition,the differences between optimal economic control strategy and optimal dynamic control strategy are discussed.Then,the traditional continuous optimal dynamic and economic control lines are divided into multi-step upshift points.Meanwhile,the corresponding downshift points are set to avoid the interference near shift points.After that,the novel discretized ratio control methods for CVT system are proposed.By respectively discretizing throttle opening and vehicle speed,the discretized ratio control strategy for throttle opening,and the integrated discretized ratio control strategy for throttle opening and vehicle speed are further proposed and simulated.Furthermore,the hardware-in-the-loop(HIL)test system is built to further verify the feasibility and accuracy of discretized ratio control strategies.Both simulation and HIL test results show that the sensitivity of throttle opening and vehicle speed to ratio control is reduced dramatically,the fluctuation of ratio is decreased considerably,the transmission efficiency is increased significantly,and the jerk is declined moderately.展开更多
基金supported by the“Shuimu Tsinghua Scholar”Project,China(No.2024SM223)the National Science and Technology Major Project,China(No.Y2022-V-0002-0028).
文摘Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significantly affected by the flow disturbance caused by aero-engine acceleration and deceleration. This would reduce the credibility of ASTF’s test results for the aero-engine. Therefore, first, this paper proposes a feedforward compensation-based L1 adaptive control method for ASTF to address this problem. The baseline controller is first designed based on ideal uncoupled closed-loop dynamics to achieve dynamic decoupling. Then, L1 adaptive control is adopted to deal with various uncertainties and ensure good control performance. To further enhance the anti-disturbance performance, a feedforward strategy based on disturbance prediction is designed in the L1 adaptive control framework to compensate for the unmatched flow disturbance, which cannot be measured directly. In addition, this strategy takes into account the effects of actuator dynamics. With this method, the feedforward term can be determined from the nominal model parameters despite uncertainties. Finally, to demonstrate the effectiveness of the proposed method, various comparative experiments are performed on a hardware-in-the-loop system of ASTF. The experimental results show that the proposed method possesses excellent tracking performance, anti-disturbance performance and robustness.
基金This work was supported by National Natural Science Foundation of China(Grant No.51305473)Project Funded by China Postdoctoral Science Foundation(Grant No.2014M552317)+1 种基金Postdoctoral Science Funded Project of Chongqing(Grant No.xm2014032)Foundation and Advanced Research Program General Project of Chongqing City,China(Grant No.cstc2014jcyjA60006).Finally,the authors are grateful to the anonymous reviewers for their helpful comments and constructive suggestions.
文摘Based on traditional continuous control strategy for Continuously Variable Transmission(CVT)ratio,according to the principles of shift control strategy for stepped automatic transmission,the influences of throttle opening and external resistance or vehicle speed on CVT ratio control are analyzed on bumpy road.Under the same variation of external resistance condition,the differences between optimal economic control strategy and optimal dynamic control strategy are discussed.Then,the traditional continuous optimal dynamic and economic control lines are divided into multi-step upshift points.Meanwhile,the corresponding downshift points are set to avoid the interference near shift points.After that,the novel discretized ratio control methods for CVT system are proposed.By respectively discretizing throttle opening and vehicle speed,the discretized ratio control strategy for throttle opening,and the integrated discretized ratio control strategy for throttle opening and vehicle speed are further proposed and simulated.Furthermore,the hardware-in-the-loop(HIL)test system is built to further verify the feasibility and accuracy of discretized ratio control strategies.Both simulation and HIL test results show that the sensitivity of throttle opening and vehicle speed to ratio control is reduced dramatically,the fluctuation of ratio is decreased considerably,the transmission efficiency is increased significantly,and the jerk is declined moderately.