期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
1
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
在线阅读 下载PDF
An Improved Harris Hawk Optimization Algorithm
2
作者 GuangYa Chong Yongliang YUAN 《Mechanical Engineering Science》 2024年第1期21-25,共5页
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F... Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems. 展开更多
关键词 harris hawk optimization algorithm chaotic mapping cosine strategy function optimization
在线阅读 下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:13
3
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 Flyrock harris hawks optimization(HHO) Multi-layer perceptron(MLP) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(WOA)
在线阅读 下载PDF
Computing Connected Resolvability of Graphs Using Binary Enhanced Harris Hawks Optimization 被引量:1
4
作者 Basma Mohamed Linda Mohaisen Mohamed Amin 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2349-2361,共13页
In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distanc... In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension. 展开更多
关键词 Connected resolving set binary optimization harris hawks algorithm
在线阅读 下载PDF
Optimization of Resource Allocation in Unmanned Aerial Vehicles Based on Swarm Intelligence Algorithms
5
作者 Siling Feng Yinjie Chen +1 位作者 Mengxing Huang Feng Shu 《Computers, Materials & Continua》 SCIE EI 2023年第5期4341-4355,共15页
Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby ext... Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby extending the lifetime of this energy-constrained device.This paper investigates the optimization of resource allocation in light of the fact that power transfer and data transmission cannot be performed simultaneously.In this paper,we propose an optimization strategy for the resource allocation of UAVs in sensor communication networks.It is a practical solution to the problem of marine sensor networks that are located far from shore and have limited power.A corresponding system model is summarized based on the scenario and existing theoretical works.The minimum throughputmaximizing object is then formulated as an optimization problem.As swarm intelligence algorithms are utilized effectively in numerous fields,this paper chose to solve the formed optimization problem using the Harris Hawks Optimization and Whale Optimization Algorithms.This paper introduces a method for translating multi-decisions into a row vector in order to adapt swarm intelligence algorithms to the problem,as joint time and energy optimization have two sets of variables.The proposed method performs well in terms of stability and duration.Finally,performance is evaluated through numerical experiments.Simulation results demonstrate that the proposed method performs admirably in the given scenario. 展开更多
关键词 Resource allocation unmanned aerial vehicles harris hawks optimization whale optimization algorithm
在线阅读 下载PDF
基于Harris Hawks优化算法的介质波导滤波器优化设计 被引量:2
6
作者 舒佩文 麦健业 褚庆昕 《电波科学学报》 CSCD 北大核心 2021年第5期787-796,共10页
Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文... Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文中首先描述了HHO算法流程,并结合滤波器优化问题提出了一种通用框架;然后基于稳态假设对HHO算法的更新方程进行了理论分析,依据所导出的方程分析了算法的动态特性及收敛行为;最后利用HHO算法实现了两款介质波导滤波器的优化设计.为验证算法性能,将本文算法与三个著名的群智能算法进行比较.实验结果表明,HHO算法的收敛速度、效率和精度都明显优于目前业内主流应用的自适应差分进化算法、花粉授粉优化算法和灰狼优化算法. 展开更多
关键词 群智能优化算法 5G移动通信 harris hawks优化(HHO)算法 滤波器优化设计 介质波导滤波器
在线阅读 下载PDF
An Improved Jump Spider Optimization for Network Traffic Identification Feature Selection 被引量:1
7
作者 Hui Xu Yalin Hu +1 位作者 Weidong Cao Longjie Han 《Computers, Materials & Continua》 SCIE EI 2023年第9期3239-3255,共17页
The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for to... The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features. 展开更多
关键词 Network traffic identification feature selection jumping spider optimization algorithm harris hawk optimization small hole imaging
在线阅读 下载PDF
An Improved Harris Hawks Optimization Algorithm with Multi-strategy for Community Detection in Social Network 被引量:6
8
作者 Farhad Soleimanian Gharehchopogh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1175-1197,共23页
The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing conne... The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing connections between things. Communities are node clusters with many internal links but minimal intergroup connections. Although community detection has attracted much attention in social media research, most face functional weaknesses because the structure of society is unclear or the characteristics of nodes in society are not the same. Also, many existing algorithms have complex and costly calculations. This paper proposes different Harris Hawk Optimization (HHO) algorithm methods (such as Improved HHO Opposition-Based Learning(OBL) (IHHOOBL), Improved HHO Lévy Flight (IHHOLF), and Improved HHO Chaotic Map (IHHOCM)) were designed to balance exploitation and exploration in this algorithm for community detection in the social network. The proposed methods are evaluated on 12 different datasets based on NMI and modularity criteria. The findings reveal that the IHHOOBL method has better detection accuracy than IHHOLF and IHHOCM. Also, to offer the efficiency of the , state-of-the-art algorithms have been used as comparisons. The improvement percentage of IHHOOBL compared to the state-of-the-art algorithm is about 7.18%. 展开更多
关键词 Bionic algorithm Complex network Community detection harris hawk optimization algorithm Opposition-based learning Levy flight Chaotic maps
原文传递
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
9
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
基于IHHO-Stacking集成模型的车辆驾驶性评估
10
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 STACKING 集成模型 客观评价
在线阅读 下载PDF
基于改进HHO的水轮机空化信号降噪及特征提取
11
作者 刘忠 刘圳 +2 位作者 邹淑云 周泽华 乔帅程 《噪声与振动控制》 北大核心 2025年第2期70-75,111,共7页
为对水轮机空化声发射信号进行降噪并提取其时频特征,提出一种基于改进哈里斯鹰算法(IHHO)和波动散布熵(FDE)的降噪和特征提取方法。首先,利用秃鹰搜索算法(BES)的螺旋搜索机制改进哈里斯鹰算法(HHO)的全局搜索阶段。然后,以散布熵差异... 为对水轮机空化声发射信号进行降噪并提取其时频特征,提出一种基于改进哈里斯鹰算法(IHHO)和波动散布熵(FDE)的降噪和特征提取方法。首先,利用秃鹰搜索算法(BES)的螺旋搜索机制改进哈里斯鹰算法(HHO)的全局搜索阶段。然后,以散布熵差异互相关系数为适应度函数,利用IHHO对VMD进行参数寻优,对信号进行最优VMD分解和相关系数阈值重构从而实现降噪。最后,提取其能量和波动散布熵特征,分析其随空化系数变化的关系。结果表明:相较于灰狼-布谷鸟(GWO-CS)和HHO算法,IHHO对VMD寻优的降噪效果更好;随着空化系数减小,声发射信号能量呈现先增加、再减小、再增加、再减小的趋势,波动散布熵值呈现先减小后增大的趋势。 展开更多
关键词 声学 水轮机 空化 声发射 降噪 哈里斯鹰优化算法 秃鹰搜索算法
在线阅读 下载PDF
混合策略改进的哈里斯鹰优化算法
12
作者 李雪 丁正生 《云南大学学报(自然科学版)》 北大核心 2025年第1期60-69,共10页
针对原始哈里斯鹰优化(Harris Hawks optimization,HHO)算法收敛精度低、收敛速度慢和易陷入局部最优的问题,提出一种混合策略改进的哈里斯鹰优化算法(Sinh Cosh Cauchy Harris Hawks optimization,SCCHHO).首先,使用佳点集初始化种群,... 针对原始哈里斯鹰优化(Harris Hawks optimization,HHO)算法收敛精度低、收敛速度慢和易陷入局部最优的问题,提出一种混合策略改进的哈里斯鹰优化算法(Sinh Cosh Cauchy Harris Hawks optimization,SCCHHO).首先,使用佳点集初始化种群,增加种群多样性;其次,引入双曲正余弦权重因子提高算法的全局搜索能力;然后,在局部搜索阶段引入柯西变异算子,帮助算法跳出局部最优;另外,采用了重启策略,提高了算法的收敛精度和后期的搜索能力.仿真实验采用不同类型的测试函数对改进算法进行了性能测试,实验数据结果、Wilcoxon符号秩检验和算法的收敛曲线表明算法的优越性.并通过对压力容器设计问题求解,验证了SCCHHO算法具有良好的适用性和有效性.最后,利用改进算法优化最小二乘支持向量机参数,并应用于波士顿房价预测,实验结果进一步验证混合策略改进的哈里斯鹰优化算法是有效的. 展开更多
关键词 哈里斯鹰优化算法 佳点集 双曲正余弦惯性权重 柯西变异 重启策略
在线阅读 下载PDF
基于改进哈里斯鹰优化算法的微电网多目标优化调度
13
作者 王鑫 李升 《分布式能源》 2025年第1期91-100,共10页
针对新能源发电接入以及考虑需求响应背景下的微电网优化调度问题,建立微电网模型;以考虑需求响应带来的用户用电不舒适度和系统的运行成本构建目标函数,调整用户可转移负荷。根据风光出力具有的随机性、波动性等特点,采用模糊K-means... 针对新能源发电接入以及考虑需求响应背景下的微电网优化调度问题,建立微电网模型;以考虑需求响应带来的用户用电不舒适度和系统的运行成本构建目标函数,调整用户可转移负荷。根据风光出力具有的随机性、波动性等特点,采用模糊K-means算法对风光出力数据进行聚类,得到典型的风光出力曲线。对哈里斯鹰优化(Harris hawks optimization,HHO)算法种群分布不均以及易陷入局部最优的问题进行改进:首先,在初始化种群阶段引入Tent映射,使得初始种群覆盖更全面,避免在早期陷入局部最优解;然后,在搜索阶段引入Levy飞行函数,增强算法的全局搜索能力,再将改进哈里斯鹰优化(improved HHO,IHHO)算法应用于寻优,并将其与经典算法进行对比。最终结果验证了所提策略的有效性以及IHHO算法的优越性。 展开更多
关键词 微电网 需求响应 改进哈里斯鹰优化(IHHO)算法 Levy飞行 优化调度
在线阅读 下载PDF
基于改进哈里斯鹰算法的消防疏散系统路径规划研究
14
作者 何志祥 王立纲 董勤 《消防科学与技术》 北大核心 2025年第3期347-355,共9页
针对大型公共建筑物发生火灾时疏散难度大的问题,提出了一种基于改进哈里斯鹰算法的消防疏散路径规划方法。首先,通过栅格法对路径规划所需的数字地图进行建模,并以最短路径为目标构建路径规划评价的目标函数。其次,引入拉丁超立方抽样... 针对大型公共建筑物发生火灾时疏散难度大的问题,提出了一种基于改进哈里斯鹰算法的消防疏散路径规划方法。首先,通过栅格法对路径规划所需的数字地图进行建模,并以最短路径为目标构建路径规划评价的目标函数。其次,引入拉丁超立方抽样、透镜逆学习策略以及自适应权重因子对传统哈里斯鹰算法进行改进,并采用B-spline曲线平滑方法对规划路径进行平滑处理。最后,在未发生火灾和发生火灾情况下与其他3种算法进行了比较分析,以验证所提算法的优良性能。试验结果表明:所提算法在未发生火灾情况下,平均路径长度为21.82 m,规划时间为20.4 s,比改进前分别减少5.9%和6.8%;在发生火灾时,平均路径长度为22.45 m,规划时间为21.5 s,较改进前减少39.0%和48.8%。与其他算法相比,所提算法在路径搜索速度、平均长度、稳定性等方面均具有良好优势,能够获得最优的路径规划综合性能。 展开更多
关键词 路径规划 哈里斯鹰算法 火灾 消防疏散 栅格法
在线阅读 下载PDF
融合扰动策略的自适应哈里斯鹰优化算法
15
作者 尚凯凯 《计算机与数字工程》 2025年第2期338-346,共9页
为提高哈里斯鹰优化算法收敛精度和跳出局优的能力,提出了融合扰动策略的自适应哈里斯鹰优化算法(ADHHO)。首先,通过改进Tent混沌映射产生更加均匀的种群,保证种群的多样性。其次,引入非线性逃逸能量函数策略,平衡算法局部开发和全局搜... 为提高哈里斯鹰优化算法收敛精度和跳出局优的能力,提出了融合扰动策略的自适应哈里斯鹰优化算法(ADHHO)。首先,通过改进Tent混沌映射产生更加均匀的种群,保证种群的多样性。其次,引入非线性逃逸能量函数策略,平衡算法局部开发和全局搜索的性能。然后,通过自适应扰动对最优解进行变异扰动,避免算法进入局部最优,提升算法的反早熟能力。最后,将ADHHO对八个基准测试函数进行仿真实验,并与群体智能优化算法和改进的HHO进行对比求解分析。结果表明,所提算法在收敛精度和反早熟能力方面具有一定优势。 展开更多
关键词 哈里斯鹰优化算法 Tent混沌 非线性逃逸能量 自适应扰动
在线阅读 下载PDF
Crisscross Harris Hawks Optimizer for Global Tasks and Feature Selection 被引量:1
16
作者 Xin Wang Xiaogang Dong +1 位作者 Yanan Zhang Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1153-1174,共22页
Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it under... Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it undergoes weak global search capability because of the levy distribution in its optimization process. In this paper, a variant of HHO is proposed using Crisscross Optimization Algorithm (CSO) to compensate for the shortcomings of original HHO. The novel developed optimizer called Crisscross Harris Hawks Optimizer (CCHHO), which can effectively achieve high-quality solutions with accelerated convergence on a variety of optimization tasks. In the proposed algorithm, the vertical crossover strategy of CSO is used for adjusting the exploitative ability adaptively to alleviate the local optimum;the horizontal crossover strategy of CSO is considered as an operator for boosting explorative trend;and the competitive operator is adopted to accelerate the convergence rate. The effectiveness of the proposed optimizer is evaluated using 4 kinds of benchmark functions, 3 constrained engineering optimization issues and feature selection problems on 13 datasets from the UCI repository. Comparing with nine conventional intelligence algorithms and 9 state-of-the-art algorithms, the statistical results reveal that the proposed CCHHO is significantly more effective than HHO, CSO, CCNMHHO and other competitors, and its advantage is not influenced by the increase of problems’ dimensions. Additionally, experimental results also illustrate that the proposed CCHHO outperforms some existing optimizers in working out engineering design optimization;for feature selection problems, it is superior to other feature selection methods including CCNMHHO in terms of fitness, error rate and length of selected features. 展开更多
关键词 harris hawks optimization Bioinspired algorithm Global optimization Engineering optimization Feature selection
原文传递
改进群体智能算法的无线传感器网络覆盖优化 被引量:5
17
作者 贾润亮 张海玉 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期155-166,共12页
为解决无线传感器网络(Wireless Sensor Networks,WSN)节点分布不均和随机部署中的低覆盖率问题,该文提出一种改进群体智能算法的无线传感器网络覆盖优化算法,即改进的黑猩猩优化和哈里斯鹰优化的混合优化算法(Improved Chimp Optimizat... 为解决无线传感器网络(Wireless Sensor Networks,WSN)节点分布不均和随机部署中的低覆盖率问题,该文提出一种改进群体智能算法的无线传感器网络覆盖优化算法,即改进的黑猩猩优化和哈里斯鹰优化的混合优化算法(Improved Chimp Optimization and Harris Hawk Optimization Algorithm,ICHHO).该算法首先对黑猩猩优化算法(Chimpanzee Optimization Algorithm,ChOA)进行改进,使用Levy Flight来改善其探索阶段,然后设计一个更新的公式来计算猎物逃逸能量,作为开发和探索之间的选择因素.传感器节点随机部署后,将ICHHO在传感器节点上执行,按照改进策略更新个体位置信息,计算相应的适应程度,找到最优传感器位置,并根据传感器概率模型确定网络最优覆盖率.仿真结果验证了ICHHO对于解决WSN覆盖问题的适用性,与其他优化算法的对比结果显示,ICHHO在提高覆盖率方面优于其他算法. 展开更多
关键词 无线传感器网络 黑猩猩优化 哈里斯鹰优化 覆盖率 群体智能算法
在线阅读 下载PDF
改进哈里斯鹰算法的仓储机器人路径规划研究 被引量:5
18
作者 雷旭 陈静夷 陈潇阳 《系统仿真学报》 CAS CSCD 北大核心 2024年第5期1081-1092,共12页
为提高静态环境下仓储移动机器人路径规划效率,解决传统哈里斯鹰(Harris Hawks optimization, HHO)算法在路径规划中存在收敛速度慢且易陷入局部最优的问题,提出了一种基于Tent混沌映射融合柯西反学习变异的哈里斯鹰优化算法(HHO algori... 为提高静态环境下仓储移动机器人路径规划效率,解决传统哈里斯鹰(Harris Hawks optimization, HHO)算法在路径规划中存在收敛速度慢且易陷入局部最优的问题,提出了一种基于Tent混沌映射融合柯西反学习变异的哈里斯鹰优化算法(HHO algorithmbasedon Tentchaotic mapping hybrid Cauchy mutation and inverse learning, TCLHHO)。通过Tent混沌映射增加种群多样性,以提高算法的收敛速度;提出指数型的猎物逃逸能量更新策略,以平衡算法的全局搜索和局部开发能力;通过柯西反学习变异策略对最优个体进行扰动,扩大算法的搜索范围,增强全局搜索能力。根据真实仓储环境搭建二维栅格环境模型,并在Matlab中进行仿真对比实验。结果表明:该算法的规划速度、最优路径长度以及最优路径转折次数较对比算法具有较好的效果,验证了应用于智能仓储环境下改进的HHO路径规划问题的可行性和鲁棒性。 展开更多
关键词 移动机器人 路径规划 哈里斯鹰优化算法 栅格地图 多策略改进
在线阅读 下载PDF
多策略集成的哈里斯鹰算法求解全局优化问题 被引量:1
19
作者 李煜 林笑笑 刘景森 《运筹与管理》 CSSCI CSCD 北大核心 2024年第6期28-34,共7页
为提高哈里斯鹰算法优化问题的性能,提出一种融合佳点集、非线性能量逃逸因子和Logistic-Cubic级联混沌扰动的多策略哈里斯鹰优化算法(Improve Harris Hawk Optimization,IHHO)。首先,引入佳点集策略代替随机初始种群,均匀初始种群分布... 为提高哈里斯鹰算法优化问题的性能,提出一种融合佳点集、非线性能量逃逸因子和Logistic-Cubic级联混沌扰动的多策略哈里斯鹰优化算法(Improve Harris Hawk Optimization,IHHO)。首先,引入佳点集策略代替随机初始种群,均匀初始种群分布性。其次,根据算法各个阶段不同特征提出一种非线性能量逃逸因子,平衡全局和局部勘探能力。最后,引入Logistic-Cubic级联混沌对搜索位置扰动,避免算法陷入局部最优。利用IHHO算法求解23个函数及三桁架工程设计问题,并利用目标收敛曲线、Wilcoxon秩和检验进行测试,结果表明,IHHO算法相比对比算法具有更强寻优性能、求解稳定性,在求解全局优化问题上具有一定竞争性。 展开更多
关键词 HHO算法 佳点集策略 非线性逃逸因子 级联混沌 工程问题
在线阅读 下载PDF
基于改进哈里斯鹰优化算法的动态路径规划研究 被引量:1
20
作者 胡啸 张呈越 +2 位作者 卞炜 王健安 董朋涛 《控制工程》 CSCD 北大核心 2024年第4期591-600,共10页
针对传统栅格地图下的路径规划算法存在多峰值优化、无法实时避障等问题,提出了一种基于改进哈里斯鹰优化算法的动态路径规划方法。首先,提出方形邻格邻近扩散方法初始化哈里斯鹰种群位置,在路径规划问题模型下增加种群多样性;然后,提... 针对传统栅格地图下的路径规划算法存在多峰值优化、无法实时避障等问题,提出了一种基于改进哈里斯鹰优化算法的动态路径规划方法。首先,提出方形邻格邻近扩散方法初始化哈里斯鹰种群位置,在路径规划问题模型下增加种群多样性;然后,提出一种非线性能量因子优化算法在搜索和开发之间的更新比例,提高全局搜索性能;最后,引入动态窗口法提高机器人实际运行路径的平滑程度,构造结合全局路径的动态窗口评价函数以改善动态窗口法前瞻性不足的问题。实验结果表明,所提方法可以兼顾实时避障和路径最优的需求。 展开更多
关键词 路径规划 改进哈里斯鹰优化算法 动态窗口法 实时避障
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部