期刊文献+
共找到538,714篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental study on the physical and mechanical properties of carbonatite rocks under high confining pressure after thermal treatment
1
作者 Wendong Yang Bingqi Wang +2 位作者 Jun Yao Pathegama G.Ranjith Xiang Zhang 《Deep Underground Science and Engineering》 2025年第1期105-118,共14页
Oil and gas exploration studies have been increasingly moving deeper into the earth.The rocks in deep and ultra-deep reservoirs are exposed to a complex environment of high temperatures and large geo-stresses.The Tari... Oil and gas exploration studies have been increasingly moving deeper into the earth.The rocks in deep and ultra-deep reservoirs are exposed to a complex environment of high temperatures and large geo-stresses.The Tarim oilfield in the Xinjiang Uygur Autonomous Region(Xinjiang for short),China,has achieved a breakthrough in the exploration of deep hydrocarbon reservoirs at a depth of over 9000 m.The mechanical properties of deep rocks are significantly different from those of shallow rocks.In this study,triaxial compression tests were conducted on heat-treated carbonatite rocks to explore the evolution of the mechanical properties of carbonatite rocks under high confining pressure after thermal treatment.The rocks for the tests were collected from reservoirs in the Tarim oilfield,Xinjiang,China.The experiments were performed at confining pressures ranging from atmospheric to 120 MPa and temperatures ranging from25 to 500°C.The results show that the critical confining pressure of the brittle–ductile transition increases with increasing temperature.Young's modulus is negatively correlated with the temperature and positively correlated with the confining pressure.As the confining pressure increases,the failure mode of the specimens gradually transforms from shear fracture failure into“V”-type failure and finally into bulging failure(multiple shear fractures).With increasing temperature,the failure angle tends to decrease.In addition,an improved version of the Mohr-Coulomb strength criterion with a temperature-dependent power function was proposed to describe the failure strength of carbonatite rocks after exposure to high temperature and high confining pressure.The surface of the strength envelope of this criterion is temperature dependent,which could reflect the strength evolution of rock under high confining pressures after thermal treatment.Compared with other strength criteria,this criterion is more capable of replicating physical processes. 展开更多
关键词 CARBONATITE high confining pressure high temperature oil and gas reservoirs ultra-deep rocks
在线阅读 下载PDF
Ultra-high quality factor and ultra-high accelerating gradient achievements in a 1.3 GHz continuous wave cryomodule
2
作者 Jin-Fang Chen Yue Zong +35 位作者 Xiao-Yun Pu Sheng-Wang Xiang Shuai Xing Zheng Li Xu-Ming Liu Yan-Fei Zhai Xiao-Wei Wu Yong-Zhou He Ling-Ling Gong Ji-Dong Zhang Shan-Shan Cao Wen-Ding Fang Bin-Tuan Zhang Kai Xu Yi-Bo Yu Guang-Hua Chen Li-Jun Lu Ya-Wei Huang Shen-Jie Zhao Hong-Tao Hou Zhen-Yu Ma Ye-Liang Zhao Xiang Zheng Jiu-Ce Sun Sen Sun Zhi-Qiang Jiang Yu-Bin Zhao Meng Zhang Ying-Bing Yan Yi-Yong Liu Qiang Gu Bo Liu Li-Xin Yin Dong Wang Hai-Xiao Deng Zhen-Tang Zhao 《Nuclear Science and Techniques》 2025年第2期18-26,共9页
We report the world-leading performance of a 1.3 GHz cryomodule equipped with eight 9-cell superconducting radio-frequency cavities that underwent a medium-temperature furnace baking process.During continuous wave hor... We report the world-leading performance of a 1.3 GHz cryomodule equipped with eight 9-cell superconducting radio-frequency cavities that underwent a medium-temperature furnace baking process.During continuous wave horizontal testing,these cavities achieved unprecedented average intrinsic quality factors of 4.0×10^(10)at 20 MV/m and 3.2×10^(10)at 29 MV/m,with no instances of field emission.The cryomodule demonstrates near-complete preservation of ultra-high quality factors and ultra-high accelerating gradients from vertical to horizontal testing,marking a significant milestone in continuous-wave superconducting radio-frequency accelerator technology.This letter presents the cryomodule development experience,includ-ing cavity preparation,cryomodule assembly,degaussing,fast cooldown,and performance testing. 展开更多
关键词 SRF cryomodule Mid-T baking high quality factor high accelerating gradient
在线阅读 下载PDF
Experimental investigation on high heat flux plasma parameters of HIT-PSI device in argon discharges
3
作者 Tao HUANG Qiuyue NIE +7 位作者 Cheng CHEN Lin NIE Wei ZHAO Tao JIANG Yang LIU Xu ZHAO Feng LI Xiaogang WANG 《Plasma Science and Technology》 2025年第1期118-127,共10页
Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must m... Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed. 展开更多
关键词 linear plasma device plasma-material interaction high heat flux high particle flux
在线阅读 下载PDF
Sulfolane‑Based Flame‑Retardant Electrolyte for High‑Voltage Sodium‑Ion Batteries
4
作者 Xuanlong He Jie Peng +15 位作者 Qingyun Lin Meng Li Weibin Chen Pei Liu Tao Huang Zhencheng Huang Yuying Liu Jiaojiao Deng Shenghua Ye Xuming Yang Xiangzhong Ren Xiaoping Ouyang Jianhong Liu Biwei Xiao Jiangtao Hu Qianling Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期498-516,共19页
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p... Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes. 展开更多
关键词 Sodium-ion batteries Sulfolane-based electrolyte high voltage Layered oxide cathode Flame retardant
在线阅读 下载PDF
High Fe‑Loading Single‑Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy
5
作者 Si Chen Fang Huang +5 位作者 Lijie Mao Zhimin Zhang Han Lin Qixin Yan Xiangyu Lu Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期187-203,共17页
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ... The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections. 展开更多
关键词 Nanocatalytic medicine Single-atom catalysts Reactive oxygen species(ROS) high metal loading Oxidase catalysis
在线阅读 下载PDF
High mobility group box 1 in the central nervous system:regeneration hidden beneath inflammation
6
作者 Hanki Kim Bum Jun Kim +4 位作者 Seungyon Koh Hyo Jin Cho Xuelian Jin Byung Gon Kim Jun Young Choi 《Neural Regeneration Research》 SCIE CAS 2025年第1期107-115,共9页
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex... High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1. 展开更多
关键词 central nervous system damage-associated molecular pattern ethyl pyruvate glycyrhizzin high mobility group box 1 INFLAMMATION neural stem cells NEURODEVELOPMENT oligodendrocyte progenitor cells redox status REGENERATION
在线阅读 下载PDF
High-precision spot centroid positioning of high-frame-rate short-wave infrared images for satellite laser communication
7
作者 FU Peng HE Dao-Gang +1 位作者 LIU Jun WANG Yue-Ming 《红外与毫米波学报》 北大核心 2025年第1期66-77,共12页
The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave... The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images. 展开更多
关键词 satellite laser communication spot centroid positioning short-wave infrared high frame rate NONUNIFORMITY
在线阅读 下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells
8
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
9
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Research Progress on High-Risk Factors of NEC
10
作者 Hao He Jianhong Liu +1 位作者 Xiaoqian Yi Xiaofang Zhu 《Journal of Biosciences and Medicines》 2025年第2期18-26,共9页
Necrotizing enterocolitis (NEC) in newborns is one of the life-threatening diseases. With the continuous advancement of perinatal medicine and neonatal intensive care technology, NEC has been on the rise year by year.... Necrotizing enterocolitis (NEC) in newborns is one of the life-threatening diseases. With the continuous advancement of perinatal medicine and neonatal intensive care technology, NEC has been on the rise year by year. The etiology of NEC is not yet clear, and it may be the result of multiple risk factors working together, such as premature birth, infection, formula feeding, ischemia, hypoxia, dysbiosis of intestinal flora, and immune damage. Additionally, recent reports have documented factors such as immunoglobulin treatment for hemolytic jaundice, blood transfusion therapy, and rapid achievement of adequate feeding. This article comprehensively analyzes the current research progress on high-risk factors of NEC, and provides a reference for future prevention, diagnosis, and treatment directions. 展开更多
关键词 NICU NEC PRETERM high Risk Factor
在线阅读 下载PDF
The Story of High Entropy Alloys: From the Immiscible to the Miscible States in Alloys—The Entropy versus the Enthalpy Alloys
11
作者 Swe-Kai Chen 《Journal of Modern Physics》 2025年第1期1-5,共5页
The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and e... The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and enthalpy effects via a designed enthalpy-entropy plane (EE-plane) based on the Gibbs free energy equation and the introducing a charactering pseudo-unitary lattice (PUL) for entropy alloys. Based on the PUL scheme, the so-called four effects in high entropy alloys are simply nothing but the entropy effect with the other three accompanying effects: the distortion, slow diffusion and cocktail effects. 展开更多
关键词 EE-Plane Pseudo-Unitary Lattice (PUL) high Entropy Alloy Four Effects Entropy Alloys Enthalpy Alloys Solubility Solid Solution
在线阅读 下载PDF
Junior High School English Teachers’Stancetaking on Social Media in the Mainland of China
12
作者 Yanying Yao 《Journal of Contemporary Educational Research》 2025年第1期213-220,共8页
The study employs discourse analysis as an analytical methodology,integrating stancetaking and positioning theories as theoretical frameworks,analyzing a post published by an in-service teacher and its related comment... The study employs discourse analysis as an analytical methodology,integrating stancetaking and positioning theories as theoretical frameworks,analyzing a post published by an in-service teacher and its related comments on RED,to explore the stancetaking of junior high school English teachers on social platforms in the mainland of China.This paper is expected to provide effective suggestions for enhancing the positive influence of front-line teachers on social media and facilitating the development of their teaching profession amidst the backdrop of educational informatization. 展开更多
关键词 DISCOURSE English teachers Junior high school Social media STANCE Stancetaking
在线阅读 下载PDF
First-principles insights into the high-pressure stability and electronic characteristics of molybdenum nitride
13
作者 Tao Wang Ming-Hong Wen +4 位作者 Xin-Xin Zhang Wei-Hua Wang Jia-Mei Liu Xu-Ying Wang Pei-Fang Li 《Chinese Physics B》 2025年第3期142-150,共9页
Molybdenum nitride,renowned for its exceptional physical and chemical properties,has garnered extensive attention and research interest.In this study,we employed first-principles calculations and the CALYPSO structure... Molybdenum nitride,renowned for its exceptional physical and chemical properties,has garnered extensive attention and research interest.In this study,we employed first-principles calculations and the CALYPSO structure prediction method to conduct a comprehensive analysis of the crystal structures and electronic properties of molybdenum nitride(Mo_(x)N_(1-x))under high pressure.We discovered two novel high-pressure phases:Imm2-MoN_(3) and Cmmm-MoN_(4),and confirmed their stability through the analysis of elastic constants and phonon dispersion curves.Notably,the MoN_(4) phase,with its high Vickers hardness of 36.9 GPa,demonstrates potential as a hard material.The results of this study have broadened the range of known high-pressure phases of molybdenum nitride,providing the groundwork for future theoretical and experimental researches. 展开更多
关键词 molybdenum nitride CALYPSO crystal structure high pressure
在线阅读 下载PDF
Intensive Planting and High Yield Cultivation Techniques for Yuluxiang Pear in Hilly and Mountainous Regions
14
作者 Liping XUE 《Plant Diseases and Pests》 2025年第1期31-33,共3页
In order to enhance the guidance for Yuluxiang pear cultivation in hilly and mountainous regions, this study provides a comprehensive introduction to various aspects, including the establishment of high-standard orcha... In order to enhance the guidance for Yuluxiang pear cultivation in hilly and mountainous regions, this study provides a comprehensive introduction to various aspects, including the establishment of high-standard orchards and the reinforcement of integrated management techniques, in order to offer a valuable reference for fruit farmers engaged in scientific planting practices. 展开更多
关键词 Yuluxiang pear high yield Intensive planting CULTIVATION
在线阅读 下载PDF
Structural and transport properties of(Mg,Fe)SiO_(3) at high temperature and high pressure
15
作者 Shu Huang Zhiyang Xiang +5 位作者 Shi He Luhan Yin Shihe Zhang Chen Chen Kaihua He Cheng Lu 《Chinese Physics B》 2025年第3期123-129,共7页
(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport propert... (Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle. 展开更多
关键词 (Mg Fe)SiO_(3) structural and transport properties molecular dynamics simulations high temperature and high pressure
在线阅读 下载PDF
Experimental study of dual nano-network, high-temperature resistant aerogel material as an integration of thermal management functions
16
作者 Yueyue Xiao Tianke Mao +3 位作者 Zun Zhao Yuelei Pan Heping Zhang Xudong Cheng 《Journal of Energy Chemistry》 2025年第1期157-170,共14页
Thermal management system is highly desirable to guarantee the performance and thermal safety of lithium-ion batteries,but it reduces the energy density of battery modules and even is unable to provide highly effectiv... Thermal management system is highly desirable to guarantee the performance and thermal safety of lithium-ion batteries,but it reduces the energy density of battery modules and even is unable to provide highly effective protection.Here,a thermal management function integrated material is presented based on high-temperature resistant aerogel and phase change material and is applied at both charge–discharge process and thermal runaway condition.In this sandwich structure Paraffin@SiC nanowire/Aerogel sheet (denoted as PA@SAS) system,SiC nanowires endow the middle aerogel sheet (SAS) a dual nano-network structure.The enhanced mechanical properties of SAS were studied by compressive tests and dynamic mechanical analysis.Besides,the thermal conductivity of SAS at 600°C is only 0.042 W/(m K).The surface phase change material layers facilitate temperature uniformity of batteries (surface temperature difference less than 1.82°C) through latent heat.Moreover,a large-format battery module with four 58 Ah LiNi0.5Co0.2Mn0.3O2LIBs was assembled.PA@SAS successfully prevents thermal runaway propagation,yielding a temperature gap of 602°C through the 2 mm-thick cross section.PA@SAS also exhibits excellent performance in other safety issues such as temperature rise rate,flame heat flux,etc.The lightweight property and effective insulation performance achieves significant safety enhancement with mass and volume energy density reduction of only 0.79%and 5.4%,respectively.The originality of the present research stems from the micro and macro structure design of the proposed thermal management material and the combination of intrinsic advantages of every component.This work provides a reliable design of achieving the integration of thermal management functions into an aerogel composite and improves the thermal safety of lithium-ion batteries. 展开更多
关键词 Thermal management LITHIUM-IONBATTERIES AEROGEL high temperature thermal insulation
在线阅读 下载PDF
Teaching Strategies of High School English from an Interdisciplinary Perspective
17
作者 Xuefen Liu 《Journal of Contemporary Educational Research》 2025年第1期262-268,共7页
This article focuses on the study of high school English teaching strategies from an interdisciplinary perspective.Through an in-depth analysis of the significance and implementation path of interdisciplinary teaching... This article focuses on the study of high school English teaching strategies from an interdisciplinary perspective.Through an in-depth analysis of the significance and implementation path of interdisciplinary teaching in high school English education,combined with practical teaching cases to explore how to effectively integrate knowledge from other disciplines with English teaching,this study aims to provide a useful reference for improving the quality of high school English teaching and cultivating students’comprehensive literacy.Interdisciplinary teaching can significantly stimulate students’interest in learning and improve their language proficiency and interdisciplinary thinking,laying a solid foundation for their future development. 展开更多
关键词 INTERDISCIPLINARY high school English Teaching strategies Comprehensive literacy
在线阅读 下载PDF
Ru/NiMnB spherical cluster pillar for highly proficient green hydrogen electrocatalyst at high current density
18
作者 Md Ahasan Habib Shusen Lin +4 位作者 Mehedi Hasan Joni Sumiya Akter Dristy Rutuja Mandavkar Jae-Hun Jeong Jihoon Lee 《Journal of Energy Chemistry》 2025年第1期397-408,共12页
Advanced OER/HER electrocatalytic alternatives are crucial for the wide adaptation of green hydrogen energy.Herein,Ru/NiMnB spherical cluster pillar(SCP),denoted as Ru/NiMnB,is synthesized using a combination of elect... Advanced OER/HER electrocatalytic alternatives are crucial for the wide adaptation of green hydrogen energy.Herein,Ru/NiMnB spherical cluster pillar(SCP),denoted as Ru/NiMnB,is synthesized using a combination of electro-deposition and hydrothermal reaction.Systematic investigation of Ru doping in the NiMnB matrix revealed significant improvements in electrocatalytic performance.The Ru/NiMnB SCPs demonstrate superior OER/HER activity with low overpotentials of 150 and 103 mV at 50mA/cm^(2)in 1 M KOH,making them highly competitive with state-of-the-art electrocatalysts.Remarkably,the Ru/NiMnB SCPs exhibit a low 2-E cell voltage of 2.80 V at ultra-high current density of 2,000 m A/cm^(2)in 1 M KOH,outperforming the standard benchmark electrodes of RuO_(2)||Pt/C,thereby positioning Ru/NiMnB as one of the best bifunctional electrocatalysts.These SCPs exhibit exceptional high-current characteristics,stability and corrosion resistance,as evidenced by continuous operation at 1,000 mA/cm^(2)high-current density for over 150 h in 6 M KOH at elevated temperatures under harsh industrial conditions.Only a small amount of Ru incorporation significantly enhances the electrocatalytic performances of NiMnB,attributed to increased active sites and improved intrinsic properties such as conductivity,adsorption/desorption capability and reaction rates.Consequently,Ru/NiMnB SCPs present a promising bi-functional electrode concept for efficient green H_(2)production. 展开更多
关键词 Advanced electrocatalyst high current Corrosion resistance Industrial requirement
在线阅读 下载PDF
Mechanical properties of sandstone under in-situ high-temperature and confinement conditions
19
作者 Liyuan Liu Juan Jin +5 位作者 Jiandong Liu Wei Cheng Minghui Zhao Shengwen Luo Yifan Luo Tao Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期778-787,共10页
Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and capro... Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources. 展开更多
关键词 in-situ high temperature mechanical property thermal damage thermomechanical coupling
在线阅读 下载PDF
High-energy-density lithium manganese iron phosphate for lithium-ion batteries:Progresses,challenges,and prospects
20
作者 Bokun Zhang Xiaoyun Wang +5 位作者 Shuai Wang Yan Li Libo Chen Handong Jiao Zhijing Yu Jiguo Tu 《Journal of Energy Chemistry》 2025年第1期1-17,共17页
The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered... The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements. 展开更多
关键词 Lithiummanganese iron phosphate high energydensity LITHIUM-IONBATTERIES Reactionmechanism Tap density
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部