期刊文献+
共找到254篇文章
< 1 2 13 >
每页显示 20 50 100
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
1
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 Parametric partial differential equations(pdes) META-LEARNING Reduced order modeling Neural networks(NNs) Auto-decoder
在线阅读 下载PDF
Finite-time consensus of multi-agent systems driven by hyperbolic partial differential equations via boundary control 被引量:2
2
作者 Xuhui WANG Nanjing HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第12期1799-1816,共18页
The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the un... The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods. 展开更多
关键词 finite-time consensus hyperbolic partial differential equation(pde) leaderless multi-agent system(MAS) leader-following MAS boundary control
在线阅读 下载PDF
Oscillation of Nonlinear Impulsive Delay Hyperbolic Partial Differential Equations 被引量:2
3
作者 罗李平 彭白玉 欧阳自根 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第3期439-444,共6页
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen... In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained. 展开更多
关键词 NONLINEAR IMPULSE DELAY hyperbolic partial differential equations OSCILLATION
在线阅读 下载PDF
A Third-Order Accurate Wave Propagation Algorithm for Hyperbolic Partial Differential Equations
4
作者 Christiane Helzel 《Communications on Applied Mathematics and Computation》 2020年第3期403-427,共25页
We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the... We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the original method,i.e.,it is based on a wave decomposition at grid cell interfaces,it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter. 展开更多
关键词 Wave propagation algorithm hyperbolic partial differential equations Third-order accuracy
在线阅读 下载PDF
Numerical Solution of Parabolic in Partial Differential Equations (PDEs) in One and Two Space Variable
5
作者 Mariam Almahdi Mohammed Mu’lla Amal Mohammed Ahmed Gaweash Hayat Yousuf Ismail Bakur 《Journal of Applied Mathematics and Physics》 2022年第2期311-321,共11页
In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t&l... In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t</sub>. We begin with the simplest model problem, for heat conduction in a uniform medium. For this model problem, an explicit difference method is very straightforward in use, and the analysis of its error is easily accomplished by the use of a maximum principle. As we shall show, however, the numerical solution becomes unstable unless the time step is severely restricted, so we shall go on to consider other, more elaborate, numerical methods which can avoid such a restriction. The additional complication in the numerical calculation is more than offset by the smaller number of time steps needed. We then extend the methods to problems with more general boundary conditions, then to more general linear parabolic equations. Finally, we shall discuss the more difficult problem of the solution of nonlinear equations. 展开更多
关键词 partial differential equations (pdes) Homentropic Spatial Derivatives with Finite Differences Central Differences Finite Differences
在线阅读 下载PDF
基于ODE-PDE的大规模多智能体系统有限时间编队
6
作者 满景涛 曾志刚 +1 位作者 盛银 来金钢 《自动化学报》 北大核心 2025年第3期631-642,共12页
现有基于偏微分方程(Partial differential equation,PDE)的多智能体系统(Multi-agent system,MAS)编队控制方法要求智能体必须是密集分布的,为打破这一限制,提出一种新的基于常微分−偏微分方程(Ordinary differential equation-partial... 现有基于偏微分方程(Partial differential equation,PDE)的多智能体系统(Multi-agent system,MAS)编队控制方法要求智能体必须是密集分布的,为打破这一限制,提出一种新的基于常微分−偏微分方程(Ordinary differential equation-partial differential equation,ODE-PDE)的分析方法,以解决稀疏−密集混合分布的大规模异构MAS编队问题.首先,通过设计特定的通信协议,并基于空间离散系统部分连续化方法,将原始大量的异构MAS的ODE动力学模型转化为由一个PDE和少数几个ODE耦合而成的ODE-PDE模型.为更符合实际复杂场景,将拓扑权值规定为半马尔科夫切换的,且稀疏分布和密集分布智能体遵循不一致的切换规则.其次,针对无时滞和有时滞两种情形,设计两种异步边界控制策略,利用Lyapunov方法得到保证误差系统实际有限时间稳定的充分条件,并得到停息时间和稳定阈值的计算规则.最后,两个广义的数值仿真进一步验证了所提方法的有效性. 展开更多
关键词 大规模异构多智能体系统 常微分−偏微分方程 实际有限时间编队 半马尔科夫切换拓扑 异步边界控制
在线阅读 下载PDF
A Study of Some Nonlinear Partial Differential Equations by Using Adomian Decomposition Method and Variational Iteration Method 被引量:1
7
作者 Maha S. M. Shehata 《American Journal of Computational Mathematics》 2015年第2期195-203,共9页
In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration ... In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration Method (VIM). The results reveal that the two methods are very effective, simple and very close to the exact solution. 展开更多
关键词 Wave Variables Adomian Decomposition METHOD (ADM) Variational ITERATION METHOD (VIM) Nonlinear partial differential equation pdeS BBM and CAHN-HILLIARD equations
在线阅读 下载PDF
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments 被引量:1
8
作者 Maria B. Pintarelli Fernando Vericat 《Journal of Mathematics and System Science》 2014年第10期657-666,共10页
We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E = (a1, b1 ) × (a2, b2 ) x (a3, b3 ). We will see that with a common p... We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E = (a1, b1 ) × (a2, b2 ) x (a3, b3 ). We will see that with a common procedure in all cases, we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments. 展开更多
关键词 partial differential equations pdes) Freholm integral equations generalized moment problem
在线阅读 下载PDF
Symmetry Classification of Partial Differential Equations Based on Wu's Method
9
作者 TIAN Yi WAN Jianxiong 《Journal of Donghua University(English Edition)》 CAS 2021年第2期187-192,共6页
Lie algorithm combined with differential form Wu's method is used to complete the symmetry classification of partial differential equations(PDEs)containing arbitrary parameter.This process can be reduced to solve ... Lie algorithm combined with differential form Wu's method is used to complete the symmetry classification of partial differential equations(PDEs)containing arbitrary parameter.This process can be reduced to solve a large system of determining equations,which seems rather difficult to solve,then the differential form Wu's method is used to decompose the determining equations into a series of equations,which are easy to solve.To illustrate the usefulness of this method,we apply it to some test problems,and the results show the performance of the present work. 展开更多
关键词 Lie algorithm differential form Wu's method determining equation symmetry classification partial differential equation(pde)
在线阅读 下载PDF
A unique solution to a semilinear Black-Scholes partial differential equation for valuing multi-assets of American options
10
作者 罗庆丽 盛万成 《Journal of Shanghai University(English Edition)》 CAS 2007年第4期344-350,共7页
In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options... In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options. From the viscosity solution of a PDE, a unique viscosity solution was obtained for the semilinear Black-Scholes PDE. 展开更多
关键词 optimal stopping American (call-max/put-min) options semilinear Black-Scholes partial differential equationpde viscosity solution existence niqueness
在线阅读 下载PDF
Neural network as a function approximator and its application in solving differential equations 被引量:3
11
作者 Zeyu LIU Yantao YANG Qingdong CAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第2期237-248,共12页
A neural network(NN) is a powerful tool for approximating bounded continuous functions in machine learning. The NN provides a framework for numerically solving ordinary differential equations(ODEs) and partial differe... A neural network(NN) is a powerful tool for approximating bounded continuous functions in machine learning. The NN provides a framework for numerically solving ordinary differential equations(ODEs) and partial differential equations(PDEs)combined with the automatic differentiation(AD) technique. In this work, we explore the use of NN for the function approximation and propose a universal solver for ODEs and PDEs. The solver is tested for initial value problems and boundary value problems of ODEs, and the results exhibit high accuracy for not only the unknown functions but also their derivatives. The same strategy can be used to construct a PDE solver based on collocation points instead of a mesh, which is tested with the Burgers equation and the heat equation(i.e., the Laplace equation). 展开更多
关键词 neural network(NN) FUNCTION approximation ordinary differential equation(ODE)solver partial differential equation(pde)solver
在线阅读 下载PDF
Efficient Sparse-Grid Implementation of a Fifth-Order Multi-resolution WENO Scheme for Hyperbolic Equations
12
作者 Ernie Tsybulnik Xiaozhi Zhu Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1339-1364,共26页
High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of th... High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of the WENO algorithm,large amount of computational costs are required for solving multidimensional problems.In our previous work(Lu et al.in Pure Appl Math Q 14:57–86,2018;Zhu and Zhang in J Sci Comput 87:44,2021),sparse-grid techniques were applied to the classical finite difference WENO schemes in solving multidimensional hyperbolic equations,and it was shown that significant CPU times were saved,while both accuracy and stability of the classical WENO schemes were maintained for computations on sparse grids.In this technical note,we apply the approach to recently developed finite difference multi-resolution WENO scheme specifically the fifth-order scheme,which has very interesting properties such as its simplicity in linear weights’construction over a classical WENO scheme.Numerical experiments on solving high dimensional hyperbolic equations including Vlasov based kinetic problems are performed to demonstrate that the sparse-grid computations achieve large savings of CPU times,and at the same time preserve comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 Weighted essentially non-oscillatory(WENO)schemes Multi-resolution WENO schemes Sparse grids High spatial dimensions hyperbolic partial differential equations(pdes)
在线阅读 下载PDF
Linear Quadratic Optimal Control for Systems Governed by First-Order Hyperbolic Partial Differential Equations
13
作者 XUE Xiaomin XU Juanjuan ZHANG Huanshui 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第1期230-252,共23页
This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discret... This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation. 展开更多
关键词 Discretization-then-continuousization method first-order hyperbolic partial differential equations forward and backward partial difference equations linear quadratic optimal control.
原文传递
基于PDE去鬼影的自适应非均匀性校正算法研究 被引量:10
14
作者 张天序 袁雅婧 +1 位作者 桑红石 钟胜 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2012年第2期177-182,共6页
针对基于场景的自适应校正算法普遍存在鬼影的问题,分析了神经网络算法(NN-NUC)产生鬼影的原因,并在此基础上提出了用基于偏微分方程(PDE)的非线性滤波方法取代NN-NUC算法中邻域平均的方法来获取期望图像,从而减少边缘像素误差,达到消... 针对基于场景的自适应校正算法普遍存在鬼影的问题,分析了神经网络算法(NN-NUC)产生鬼影的原因,并在此基础上提出了用基于偏微分方程(PDE)的非线性滤波方法取代NN-NUC算法中邻域平均的方法来获取期望图像,从而减少边缘像素误差,达到消除鬼影的目的.采用实际采集的红外图像进行实验,结果表明,很好地消除了鬼影.与已有的几种去鬼影的方法相比,具有更快的收敛性. 展开更多
关键词 自适应校正算法 神经网络 鬼影 偏微分方程
在线阅读 下载PDF
基于PDE的图像去噪和反差增强同步算法 被引量:13
15
作者 陈颖 彭进业 +2 位作者 王大凯 吴亚鹏 王宾 《计算机工程》 CAS CSCD 北大核心 2009年第23期224-226,共3页
针对反差较低且包含噪声污染的灰度图像,设计分段线性拉伸函数,引入TV下降流,建立新的偏微分方程(PDE)数学模型。该模型通过设置参数λ灵活控制去噪和反差增强的程度,实现2种灰度图像处理手段的同步进行。对比实验表明,该方法可有效缓... 针对反差较低且包含噪声污染的灰度图像,设计分段线性拉伸函数,引入TV下降流,建立新的偏微分方程(PDE)数学模型。该模型通过设置参数λ灵活控制去噪和反差增强的程度,实现2种灰度图像处理手段的同步进行。对比实验表明,该方法可有效缓解传统处理方法存在的问题,在抑制噪声的同时增强图像的反差。 展开更多
关键词 偏微分方程 图像去噪 反差增强 整体变分 分段线性拉伸函数
在线阅读 下载PDF
PDE技术的图像放大模型 被引量:8
16
作者 宋锦萍 高冉 +1 位作者 朱方 台雪成 《中国图象图形学报》 CSCD 北大核心 2009年第1期82-87,共6页
偏微分方程(PDE)已成为图像处理与分析中的重要工具。而数字图像处理的一个基本内容是图像放大,即从低分辨率图像获得高分辨率图像的图像处理技术。通过两种泛函模型,利用变分的思想,提出了基于TV-norm(total variation norm)插值模型... 偏微分方程(PDE)已成为图像处理与分析中的重要工具。而数字图像处理的一个基本内容是图像放大,即从低分辨率图像获得高分辨率图像的图像处理技术。通过两种泛函模型,利用变分的思想,提出了基于TV-norm(total variation norm)插值模型和四阶偏微分方程插值模型的图像放大算法。通过仿真实验结果及均方误差(MSE)和峰值信噪比(PSNR)两种评价准则说明了该算法的有效性和可行性。 展开更多
关键词 偏微分方程(pde) 图像放大 变分 插值
在线阅读 下载PDF
PDE曲面的Bézier逼近 被引量:4
17
作者 徐岗 汪国昭 《软件学报》 EI CSCD 北大核心 2007年第11期2914-2920,共7页
为了实现PDE(panial differential equation)曲面造型技术与传统CAD(computer aided design)造型系统的数据交换,基于约束优化的思想,给出了PDE曲面的Bézier逼近算法,并利用张量积Bézier曲面的细分性质对该算法进行了优化.所... 为了实现PDE(panial differential equation)曲面造型技术与传统CAD(computer aided design)造型系统的数据交换,基于约束优化的思想,给出了PDE曲面的Bézier逼近算法,并利用张量积Bézier曲面的细分性质对该算法进行了优化.所给出的计算实例及误差比较结果说明了该算法的有效性. 展开更多
关键词 pde(partial differential equation) 最小二乘法 约束优化 Bézier曲面的细分 CAD(computer aided design)系统
在线阅读 下载PDF
加权型曲率保持PDE图像滤波方法 被引量:5
18
作者 郑钰辉 张建伟 +1 位作者 陈允杰 孙权森 《自动化学报》 EI CSCD 北大核心 2011年第10期1175-1182,共8页
提出了一种加权型曲率保持偏微分方程(Partial differential equation,PDE)滤波方法.传统曲率保持PDE滤波方法未考虑各积分曲线可能经历不同的图像结构,如此影响了其对图像边缘的保持能力.在此基础上,利用局部图像方向信息为不同积分曲... 提出了一种加权型曲率保持偏微分方程(Partial differential equation,PDE)滤波方法.传统曲率保持PDE滤波方法未考虑各积分曲线可能经历不同的图像结构,如此影响了其对图像边缘的保持能力.在此基础上,利用局部图像方向信息为不同积分曲线设计了相应的权重,得到了一种张量驱动的加权型曲率保持PDE滤波方法.实验结果表明该方法在滤波的同时能较好地保持图像中边缘与曲率结构,且对图像具有一定增强能力. 展开更多
关键词 图像滤波 曲率保持 偏微分方程 结构张量
在线阅读 下载PDF
基于PDE图像去噪方法 被引量:11
19
作者 熊保平 杜民 《计算机应用》 CSCD 北大核心 2007年第8期2025-2026,2029,共3页
基于PDE的非线性扩散滤波对接近高斯分布的噪声消除可取得好的效果,但对于脉冲噪声其效果并不理想。从Perona&Malik模型的扩散系数函数出发,对其函数性质进行分析。通过改进扩散系数函数中的边缘阈值,使其能在消除高梯度图像噪声的... 基于PDE的非线性扩散滤波对接近高斯分布的噪声消除可取得好的效果,但对于脉冲噪声其效果并不理想。从Perona&Malik模型的扩散系数函数出发,对其函数性质进行分析。通过改进扩散系数函数中的边缘阈值,使其能在消除高梯度图像噪声的同时更好地保持边缘,在一定程序上克服了边缘保持与噪声消除之间的矛盾。 展开更多
关键词 偏微分方程 边缘阈值 噪声消除 图像平滑
在线阅读 下载PDF
MATLAB PDE工具箱在稠油输送管道中的应用 被引量:5
20
作者 张纯静 申龙涉 +4 位作者 杜义朋 于丽丽 官学源 赵燕辉 张国军 《当代化工》 CAS 2012年第1期48-49,53,共3页
利用Matlab PDE工具箱可以直接描绘出稠油输送管道中充分发展阶段的层流场,运行得到的参数与理论计算值相比误差很小,随着网格的精细化,更加接近于真实值,为管道内稠油的流动研究提供了一种直观、快速、准确、形象的数值求解方法。
关键词 MATLAB pde工具箱 稠油 偏微分方程 层流场
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部