A method to predict the solid-liquid interface stability during unidirectional solidification is developed by coupling M-S model with CALPHAD method. The method was applied to AI-0.38 Zn and AI-0.34 Si-0.14 Mg (wt pct...A method to predict the solid-liquid interface stability during unidirectional solidification is developed by coupling M-S model with CALPHAD method. The method was applied to AI-0.38 Zn and AI-0.34 Si-0.14 Mg (wt pct) alloys, and the predicted results were compared with some former experimental data of the two alloys. The good agreement between the calculation results and the experimental data demonstrates the superiority of the present method to the classical one based on constant parameter assumptions.展开更多
Based on theoretical analyses, the effect of electric current density on stability of solidification interface morphology of QAl 4 alloy was studied experimentally. The results show that the experimental results agree...Based on theoretical analyses, the effect of electric current density on stability of solidification interface morphology of QAl 4 alloy was studied experimentally. The results show that the experimental results agree well with the theoretical analyses, and the following conclusions can be drawn: the increase of electric current density improves the stability of the solidification interface morphology under the condition of no convection of the liquid metal. Otherwise this convection will slow down the trend of solidification interface developing to stability caused by increasing electric current density.展开更多
基金the State Key Fundamental Research Project(G2000067202-1).
文摘A method to predict the solid-liquid interface stability during unidirectional solidification is developed by coupling M-S model with CALPHAD method. The method was applied to AI-0.38 Zn and AI-0.34 Si-0.14 Mg (wt pct) alloys, and the predicted results were compared with some former experimental data of the two alloys. The good agreement between the calculation results and the experimental data demonstrates the superiority of the present method to the classical one based on constant parameter assumptions.
文摘Based on theoretical analyses, the effect of electric current density on stability of solidification interface morphology of QAl 4 alloy was studied experimentally. The results show that the experimental results agree well with the theoretical analyses, and the following conclusions can be drawn: the increase of electric current density improves the stability of the solidification interface morphology under the condition of no convection of the liquid metal. Otherwise this convection will slow down the trend of solidification interface developing to stability caused by increasing electric current density.