期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
1
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(jsp) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
在线阅读 下载PDF
APPLYING PARTICLE SWARM OPTIMIZATION TO JOB-SHOPSCHEDULING PROBLEM 被引量:5
2
作者 XiaWeijun WuZhiming ZhangWei YangGenke 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期437-441,共5页
A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a ... A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a collaborative population-based search, which isinspired by the social behavior of bird flocking. It combines local search (by self experience) andglobal search (by neighboring experience), possessing high search efficiency. Simulated annealing(SA) employs certain probability to avoid becoming trapped in a local optimum and the search processcan be controlled by the cooling schedule. By reasonably combining these two different searchalgorithms, a general, fast and easily implemented hybrid optimization algorithm, named HPSO, isdeveloped. The effectiveness and efficiency of the proposed PSO-based algorithm are demonstrated byapplying it to some benchmark job-shop scheduling problems and comparing results with otheralgorithms in literature. Comparing results indicate that PSO-based algorithm is a viable andeffective approach for the job-shop scheduling problem. 展开更多
关键词 job-shop scheduling problem Particle swarm optimization Simulated annealingHybrid optimization algorithm
在线阅读 下载PDF
A Grafted Genetic Algorithm for the Job-Shop Scheduling Problem 被引量:1
3
作者 LIXiang-jun WANGShu-zhen XUGuo-hua 《International Journal of Plant Engineering and Management》 2004年第2期91-96,共6页
The standard genetic algorithm has limitations of a low convergence rate and premature convergence in solving the job-shop scheduling problem.To overcome these limitations,this paper presents a new improved hybrid gen... The standard genetic algorithm has limitations of a low convergence rate and premature convergence in solving the job-shop scheduling problem.To overcome these limitations,this paper presents a new improved hybrid genetic algorithm on the basis of the idea of graft in botany.Through the introduction of a grafted population and crossover probability matrix,this algorithm accelerates the convergence rate greatly and also increases the ability to fight premature convergence.Finally,the approach is tested on a set of standard instances taken from the literature and compared with other approaches.The computation results validate the effectiveness of the proposed algorithm. 展开更多
关键词 grafted genetic algorithm job-shop scheduling problem premature convergence hy brid optimization strategy
在线阅读 下载PDF
An Improved Genetic Algorithm for Solving the Mixed⁃Flow Job⁃Shop Scheduling Problem with Combined Processing Constraints 被引量:4
4
作者 ZHU Haihua ZHANG Yi +2 位作者 SUN Hongwei LIAO Liangchuang TANG Dunbing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期415-426,共12页
The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.... The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness. 展开更多
关键词 mixed-flow production flexible job-shop scheduling problem(Fjsp) genetic algorithm ENCODING
在线阅读 下载PDF
Domain Knowledge Used in Meta-Heuristic Algorithms for the Job-Shop Scheduling Problem:Review and Analysis 被引量:1
5
作者 Lin Gui Xinyu Li +1 位作者 Qingfu Zhang Liang Gao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1368-1389,共22页
Meta-heuristic algorithms search the problem solution space to obtain a satisfactory solution within a reasonable timeframe.By combining domain knowledge of the specific optimization problem,the search efficiency and ... Meta-heuristic algorithms search the problem solution space to obtain a satisfactory solution within a reasonable timeframe.By combining domain knowledge of the specific optimization problem,the search efficiency and quality of meta-heuristic algorithms can be significantly improved,making it crucial to identify and summarize domain knowledge within the problem.In this paper,we summarize and analyze domain knowledge that can be applied to meta-heuristic algorithms in the job-shop scheduling problem(JSP).Firstly,this paper delves into the importance of domain knowledge in optimization algorithm design.After that,the development of different methods for the JSP are reviewed,and the domain knowledge in it for meta-heuristic algorithms is summarized and classified.Applications of this domain knowledge are analyzed,showing it is indispensable in ensuring the optimization performance of meta-heuristic algorithms.Finally,this paper analyzes the relationship among domain knowledge,optimization problems,and optimization algorithms,and points out the shortcomings of the existing research and puts forward research prospects.This paper comprehensively summarizes the domain knowledge in the JSP,and discusses the relationship between the optimization problems,optimization algorithms and domain knowledge,which provides a research direction for the metaheuristic algorithm design for solving the JSP in the future. 展开更多
关键词 domain knowledge job-shop scheduling problem meta-heuristic algorithm
原文传递
An adaptive multi-population genetic algorithm for job-shop scheduling problem 被引量:3
6
作者 Lei Wang Jing-Cao Cai Ming Li 《Advances in Manufacturing》 SCIE CAS CSCD 2016年第2期142-149,共8页
Job-shop scheduling problem (JSP) is a typical NP-hard combinatorial optimization problem and has a broad background for engineering application. Nowadays, the effective approach for JSP is a hot topic in related re... Job-shop scheduling problem (JSP) is a typical NP-hard combinatorial optimization problem and has a broad background for engineering application. Nowadays, the effective approach for JSP is a hot topic in related research area of manufacturing system. However, some JSPs, even for moderate size instances, are very difficult to find an optimal solution within a reasonable time because of the process constraints and the complex large solution space. In this paper, an adaptive multi-population genetic algorithm (AMGA) has been proposed to solve this prob- lem. Firstly, using multi-populations and adaptive cross- over probability can enlarge search scope and improve search performance. Secondly, using adaptive mutation probability and elite replacing mechanism can accelerate convergence speed. The approach is tested for some clas- sical benchmark JSPs taken from the literature and com- pared with some other approaches. The computational results show that the proposed AMGA can produce optimal or near-optimal values on almost all tested benchmark instances. Therefore, we can believe that AMGA can be considered as an effective method for solving JSP. 展开更多
关键词 job-shop scheduling problem (jsp Adaptive crossover Adaptive mutation Multi-population Elite replacing strategy
原文传递
面向多订单的JSP建模及其蚁群算法实现 被引量:3
7
作者 李言 刘永 +1 位作者 李淑娟 杨明顺 《中国机械工程》 EI CAS CSCD 北大核心 2009年第18期2198-2202,共5页
以实施JIT生产策略为目标,研究了多品种小批量生产企业在多订单生产环境下的作业车间调度问题,建立了基于提前和延期惩罚的作业调度问题优化的整数规划模型。该模型着重考虑产品装配结构约束和订单交货期约束,以降低由在制品库存引起的... 以实施JIT生产策略为目标,研究了多品种小批量生产企业在多订单生产环境下的作业车间调度问题,建立了基于提前和延期惩罚的作业调度问题优化的整数规划模型。该模型着重考虑产品装配结构约束和订单交货期约束,以降低由在制品库存引起的生产成本,确保最终获得全局最优可行解。设计了带精英策略的蚁群算法来求解该模型,并通过实例仿真验证了所建模型的正确性以及蚁群算法求解该问题的可行性和有效性。 展开更多
关键词 面向多订单 作业车间调度问题 蚁群算法 精英策略
在线阅读 下载PDF
双资源JSP动态分类调度研究 被引量:1
8
作者 陶泽 肖田元 郝长中 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第9期2243-2246,共4页
针对作业车间的加工受到机床、操作工人等双资源制约条件下出现多种扰动的JSP调度问题,提出了基于不同的扰动进行分类处理的新方法。该方法以最小化最大完工时间为目标,首先基于机床故障修复时间、工人离岗时间及取消订单包含任务的多... 针对作业车间的加工受到机床、操作工人等双资源制约条件下出现多种扰动的JSP调度问题,提出了基于不同的扰动进行分类处理的新方法。该方法以最小化最大完工时间为目标,首先基于机床故障修复时间、工人离岗时间及取消订单包含任务的多少进行分类调度,然后根据机床故障修复后以及工人回岗后剩余任务的多少决定是否进行再一次的调度。采用遗传算法和模拟退火算法相结合的算法获得调度方案,并进行分析和比较。 展开更多
关键词 遗传算法 模拟退火算法 动态分类调度 车间问题(jsp)
在线阅读 下载PDF
求解并行JSP作业车间调度问题的一种混合遗传算法 被引量:3
9
作者 方霞 俞宏图 熊齐 《机电产品开发与创新》 2021年第1期78-79,83,共3页
针对并行JSP作业车间调度问题,将所有工件对应工序按照统一顺序编号,由蚁群算法随机构造初始解,通过重排工序法保证解的可行性;融合遗传算法的选择、交叉、变异操作,加大全局最优解的求解概率,防止陷入局部最优解。在交叉算子中采用随... 针对并行JSP作业车间调度问题,将所有工件对应工序按照统一顺序编号,由蚁群算法随机构造初始解,通过重排工序法保证解的可行性;融合遗传算法的选择、交叉、变异操作,加大全局最优解的求解概率,防止陷入局部最优解。在交叉算子中采用随机设置工件固定,以及顺序交叉邻域搜索策略,使得解的多样性性均得到充分保证;实验证明,改进混合遗传算法能够有效提高并行JSP作业车间调度问题的求解。 展开更多
关键词 作业车间调度 混合遗传算法 蚁群算法 并行jsp
在线阅读 下载PDF
求解JSP问题的一种自适应遗传算法
10
作者 肖力 《鄂州大学学报》 2004年第4期56-58,共3页
该文在对车间调度问题进行描述的基础上 ,提出了一种新的自适应遗传算法 。
关键词 车间调度问题(jsp) 遗传算法 自适应变异率
在线阅读 下载PDF
Cooperative-Guided Ant Colony Optimization with Knowledge Learning for Job Shop Scheduling Problem
11
作者 Wei Li Xiangfang Yan Ying Huang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1283-1299,共17页
With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds... With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerable theoretical research value.However,finding a satisfactory solution within a given time is difficult due to the NP-hard nature of the JSP.A co-operative-guided ant colony optimization algorithm with knowledge learning(namely KLCACO)is proposed to address this difficulty.This algorithm integrates a data-based swarm intelligence optimization algorithm with model-based JSP schedule knowledge.A solution construction scheme based on scheduling knowledge learning is proposed for KLCACO.The problem model and algorithm data are fused by merging scheduling and planning knowledge with individual scheme construction to enhance the quality of the generated individual solutions.A pheromone guidance mechanism,which is based on a collaborative machine strategy,is used to simplify information learning and the problem space by collaborating with different machine processing orders.Additionally,the KLCACO algorithm utilizes the classical neighborhood structure to optimize the solution,expanding the search space of the algorithm and accelerating its convergence.The KLCACO algorithm is compared with other highperformance intelligent optimization algorithms on four public benchmark datasets,comprising 48 benchmark test cases in total.The effectiveness of the proposed algorithm in addressing JSPs is validated,demonstrating the feasibility of the KLCACO algorithm for knowledge and data fusion in complex combinatorial optimization problems. 展开更多
关键词 Ant Colony Optimization(ACO) Job shop scheduling problem(jsp) knowledge learning cooperative guidance
原文传递
Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction Optimization Algorithm 被引量:4
12
作者 Jialei Li Xingsheng Gu +1 位作者 Yaya Zhang Xin Zhou 《Complex System Modeling and Simulation》 2022年第2期156-173,共18页
Economic globalization has transformed many manufacturing enterprises from a single-plant production mode to a multi-plant cooperative production mode.The distributed flexible job-shop scheduling problem(DFJSP)has bec... Economic globalization has transformed many manufacturing enterprises from a single-plant production mode to a multi-plant cooperative production mode.The distributed flexible job-shop scheduling problem(DFJSP)has become a research hot topic in the field of scheduling because its production is closer to reality.The research of DFJSP is of great significance to the organization and management of actual production process.To solve the heterogeneous DFJSP with minimal completion time,a hybrid chemical reaction optimization(HCRO)algorithm is proposed in this paper.Firstly,a novel encoding-decoding method for flexible manufacturing unit(FMU)is designed.Secondly,half of initial populations are generated by scheduling rule.Combined with the new solution acceptance method of simulated annealing(SA)algorithm,an improved method of critical-FMU is designed to improve the global and local search ability of the algorithm.Finally,the elitist selection strategy and the orthogonal experimental method are introduced to the algorithm to improve the convergence speed and optimize the algorithm parameters.In the experimental part,the effectiveness of the simulated annealing algorithm and the critical-FMU refinement methods is firstly verified.Secondly,in the comparison with other existing algorithms,the proposed optimal scheduling algorithm is not only effective in homogeneous FMUs examples,but also superior to existing algorithms in heterogeneous FMUs arithmetic cases. 展开更多
关键词 scheduling problem distributed flexible job-shop chemical reaction optimization algorithm heterogeneous factory simulated annealing algorithm
原文传递
A hybrid genetic algorithm for multi-objective flexible job shop scheduling problem considering transportation time 被引量:9
13
作者 Xiabao Huang Lixi Yang 《International Journal of Intelligent Computing and Cybernetics》 EI 2019年第2期154-174,共21页
Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of th... Purpose–Flexible job-shop scheduling is significant for different manufacturing industries nowadays.Moreover,consideration of transportation time during scheduling makes it more practical and useful.The purpose of this paper is to investigate multi-objective flexible job-shop scheduling problem(MOFJSP)considering transportation time.Design/methodology/approach–A hybrid genetic algorithm(GA)approach is integrated with simulated annealing to solve the MOFJSP considering transportation time,and an external elitism memory library is employed as a knowledge library to direct GA search into the region of better performance.Findings–The performance of the proposed algorithm is tested on different MOFJSP taken from literature.Experimental results show that proposed algorithm performs better than the original GA in terms of quality of solution and distribution of the solution,especially when the number of jobs and the flexibility of the machine increase.Originality/value–Most of existing studies have not considered the transportation time during scheduling of jobs.The transportation time is significantly desired to be included in the FJSP when the time of transportation of jobs has significant impact on the completion time of jobs.Meanwhile,GA is one of primary algorithms extensively used to address MOFJSP in literature.However,to solve the MOFJSP,the original GA has a possibility to get a premature convergence and it has a slow convergence speed.To overcome these problems,a new hybrid GA is developed in this paper. 展开更多
关键词 Flexible job-shop scheduling problem Transportation time Genetic algorithm Simulated annealing Multi-objective optimization
原文传递
考虑批量装配的柔性作业车间调度问题研究 被引量:8
14
作者 巴黎 李言 +2 位作者 曹源 杨明顺 刘永 《中国机械工程》 EI CAS CSCD 北大核心 2015年第23期3200-3207,共8页
柔性作业车间调度是生产调度领域中的一个重要组合优化问题,由于取消了工序与加工设备的唯一性对应关系,因而相较于作业车间调度问题,具有更高的复杂度。针对该问题在批量装配方面的不足,考虑将批量因素与装配环节同时集成到柔性作业车... 柔性作业车间调度是生产调度领域中的一个重要组合优化问题,由于取消了工序与加工设备的唯一性对应关系,因而相较于作业车间调度问题,具有更高的复杂度。针对该问题在批量装配方面的不足,考虑将批量因素与装配环节同时集成到柔性作业车间调度问题当中。以成品件的完工时间为优化目标,对该批量装配柔性作业车间调度问题进行了数学建模。针对该模型,提出一种多层编码结构的粒子群算法,并对该算法的各个模块进行了设计。最后,以实例验证了该数学模型的正确性及算法的有效性。 展开更多
关键词 柔性作业车间调度问题 批量 装配 6 层编码结构 FLEXIBLE job-shop scheduling problem (Fjsp)
在线阅读 下载PDF
改进细菌觅食算法求解车间作业调度问题 被引量:16
15
作者 崔静静 孙延明 车兰秀 《计算机应用研究》 CSCD 北大核心 2011年第9期3324-3326,共3页
针对细菌觅食算法(BFOA)求解高维优化问题时容易陷入局部最优和早熟的问题,引入自适应步长及差分进化算子,并将改进算法用于车间作业调度问题(JSP)中。求解时,设计了一种编码转换方案,从而无须修改BFOA运算规则即可实现对JSP的寻优;同时... 针对细菌觅食算法(BFOA)求解高维优化问题时容易陷入局部最优和早熟的问题,引入自适应步长及差分进化算子,并将改进算法用于车间作业调度问题(JSP)中。求解时,设计了一种编码转换方案,从而无须修改BFOA运算规则即可实现对JSP的寻优;同时,采用空闲时间片段优化策略降低了调度问题的复杂性。仿真实验表明,该算法能够跳出局部最优,避免了早熟的问题,调度结果优于原始细菌觅食算法和离散粒子群算法。 展开更多
关键词 细菌觅食算法 自适应步长 车间作业调度问题 编码转换 空闲时间片段优化
在线阅读 下载PDF
求解作业车间调度问题的混合帝国主义竞争算法 被引量:10
16
作者 杨小东 康雁 +1 位作者 柳青 孙金文 《计算机应用》 CSCD 北大核心 2017年第2期517-522,552,共7页
针对最小化最大完工时间的作业车间调度问题(JSP),提出一种结合帝国主义竞争算法(ICA)和禁忌搜索(TS)算法的混合算法。混合算法以帝国主义竞争算法为基础,在同化操作中融入遗传算法中的杂交算子和变异算子,使算法全局搜索能力更强。为... 针对最小化最大完工时间的作业车间调度问题(JSP),提出一种结合帝国主义竞争算法(ICA)和禁忌搜索(TS)算法的混合算法。混合算法以帝国主义竞争算法为基础,在同化操作中融入遗传算法中的杂交算子和变异算子,使算法全局搜索能力更强。为了克服帝国主义竞争算法局部搜索能力弱的缺点,引入禁忌搜索算法进一步优化同化操作后的后代。禁忌搜索算法采用混合邻域结构和新型选择策略,使得算法能够更有效地搜索邻域解。混合算法兼具全局搜索能力和局部搜索能力,通过对13个经典的Benchmark调度问题进行仿真测试,并与近年4种新型混合算法进行对比分析,实验结果表明了所提算法求解Job Shop调度问题的有效性和稳定性。 展开更多
关键词 JOB Shop调度问题 帝国主义竞争算法 遗传算法 禁忌搜索 混合优化算法
在线阅读 下载PDF
解决Job Shop调度问题的模拟退火算法改进 被引量:14
17
作者 赵良辉 邓飞其 《计算机工程》 EI CAS CSCD 北大核心 2006年第21期38-40,共3页
模拟退火算法是较常用和较理想的解决车间作业调度问题的方法,但由于算法本身的限制和JSP问题的特殊性,其效能难以很好地发挥。该文提出了2种针对JSP问题的改进模拟退火算法:回火退火算法和快速模拟退火算法,前者可以提高最终解质量,后... 模拟退火算法是较常用和较理想的解决车间作业调度问题的方法,但由于算法本身的限制和JSP问题的特殊性,其效能难以很好地发挥。该文提出了2种针对JSP问题的改进模拟退火算法:回火退火算法和快速模拟退火算法,前者可以提高最终解质量,后者可以提高算法的运行速度;并以Matlab为工具进行了仿真实验,获得了较好效果。 展开更多
关键词 模拟退火算法 回火退火算法 快速模拟退火算法 作业车间调度问题 局部搜索算法
在线阅读 下载PDF
用于作业车间调度的模拟退火算法 被引量:12
18
作者 赵良辉 邓飞其 《制造业自动化》 北大核心 2006年第3期10-12,23,共4页
作业车间调度问题(Job Shop Scheduling Problem,JSP)是一类NP完全问题,解决此类问题较常使用非数值算法,而模拟退火算法是其中较为突出的而且应用广泛的一种算法。本文结合车间调度问题的特点阐述了模拟退火算法在解决车间调度问题上... 作业车间调度问题(Job Shop Scheduling Problem,JSP)是一类NP完全问题,解决此类问题较常使用非数值算法,而模拟退火算法是其中较为突出的而且应用广泛的一种算法。本文结合车间调度问题的特点阐述了模拟退火算法在解决车间调度问题上的应用,提出了基于模拟退火算法的车间调度问题模型,并以Matlab为工具进行了仿真实验。 展开更多
关键词 NP完全问题 模拟退火算法(SA) 作业车间调度问题(jsp) MATLAB仿真
在线阅读 下载PDF
网络并行计算中多处理机任务调度问题研究 被引量:4
19
作者 王蒙 樊坤 +1 位作者 翟亚飞 李心宁 《计算机工程与应用》 CSCD 北大核心 2017年第10期264-270,共7页
在网络并行计算系统中,具有多处理机任务需求的多步骤调度是一类常见问题,为此提出一种混合了多处理机任务调度(Multiprocessor Task Scheduling,MTS)和作业车间调度(Job-shop Scheduling Problem,JSP)的调度模型,即多处理机任务作业车... 在网络并行计算系统中,具有多处理机任务需求的多步骤调度是一类常见问题,为此提出一种混合了多处理机任务调度(Multiprocessor Task Scheduling,MTS)和作业车间调度(Job-shop Scheduling Problem,JSP)的调度模型,即多处理机任务作业车间调度(Multiprocessor Task Job-shop Scheduling Problem,MTJSP)。与传统MTS不同的是MTJSP的每项任务的完成都要经历多个步骤。首先对m台处理机加工n项任务的MTJSP调度问题建立数学模型,然后设计了一种混合粒子群优化(Hybrid Particle Swarm Optimization,HPSO)算法进行求解。算法的改进工作包括:设计出针对多处理机问题的解码策略;采用新的粒子更新方式;增加记忆库功能,以保证全局最优解的多样性;加入基于模拟退火的局部搜索功能。大量的仿真实验验证HPSO的性能,结果显示HPSO不但能够有效解决MTJSP问题,在求解经典JSP问题中也表现优良。 展开更多
关键词 多处理机任务 作业车间调度 粒子群优化算法 局部搜索
在线阅读 下载PDF
解决作业车间调度的微粒群退火算法 被引量:2
20
作者 蔡斌 毛帆 +1 位作者 傅鹂 杨仕海 《计算机应用研究》 CSCD 北大核心 2010年第3期856-859,共4页
针对微粒群优化算法在求解作业车间调度问题时存在的易早熟、搜索准确度差等缺点,在微粒群优化算法的基础上引入了模拟退火算法,从而使得算法同时具有全局搜索和跳出局部最优的能力,并且增加了对不可行解的优化,从而提高了算法的搜索效... 针对微粒群优化算法在求解作业车间调度问题时存在的易早熟、搜索准确度差等缺点,在微粒群优化算法的基础上引入了模拟退火算法,从而使得算法同时具有全局搜索和跳出局部最优的能力,并且增加了对不可行解的优化,从而提高了算法的搜索效率;同时,在模拟退火算法中引入自适应温度衰变系数,使得SA算法能根据当前环境自动调整搜索条件,从而避免了微粒群优化算法易早熟的缺点。对经典JSP问题的仿真实验表明,与其他算法相比,该算法是一种切实可行、有效的方法。 展开更多
关键词 微粒群优化 模拟退火 作业车间调度问题
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部