期刊文献+
共找到10,896篇文章
< 1 2 250 >
每页显示 20 50 100
基于K-modes聚类算法的山东省传统村落空间风貌类型及区划研究 被引量:1
1
作者 范勇 李玄 肖文杰 《小城镇建设》 2024年第5期100-107,共8页
传统村落的类型解析及空间区划是开展传统村落整体性保护和区域性发展的基础前提,本文在对山东省传统村落调查的基础上,基于空间基因理论视角,从地景、聚落、建筑、文化4个层次构建起13个指标的传统村落空间风貌分类指标体系,并采用K-mo... 传统村落的类型解析及空间区划是开展传统村落整体性保护和区域性发展的基础前提,本文在对山东省传统村落调查的基础上,基于空间基因理论视角,从地景、聚落、建筑、文化4个层次构建起13个指标的传统村落空间风貌分类指标体系,并采用K-modes聚类算法对山东省177个传统村落进行聚类分析,得到八大空间风貌类型,进一步结合区域文化、地理特点及行政区划,划分出山东省5个传统村落风貌区,从宏观视角分析了山东省传统村落空间风貌特征及其形成与发展的内在逻辑和地理分布规律,为更加整体全面地认识山东省传统村落特点、开展区域性传统村落集中连片保护利用等工作提供科学参考。 展开更多
关键词 传统村落 空间基因 k-modes聚类算法 空间区划 山东省
在线阅读 下载PDF
一种基于粗糙熵的改进K-modes聚类算法
2
作者 刘财辉 曾雄 谢德华 《南京理工大学学报》 CAS CSCD 北大核心 2024年第3期335-341,共7页
K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分... K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分考虑每个属性对聚类结果的影响。针对上述问题,该文将粗糙熵引入K-modes算法。首先利用粗糙集属性约简算法消除冗余属性,确定各属性的重要程度;然后利用粗糙熵确定每个属性的权重,从而定义新的类内距离。将该文所提算法与传统的K-modes聚类算法分别在4组公开数据集上进行对比试验。试验结果表明,该文所提算法聚类准确率比传统的K-modes聚类算法更高。 展开更多
关键词 k-modes算法 粗糙集 粗糙熵 属性约简 权重
在线阅读 下载PDF
基于粗糙集的改进K-Modes聚类算法 被引量:15
3
作者 白亮 梁吉业 曹付元 《计算机科学》 CSCD 北大核心 2009年第1期162-164,176,共4页
传统的K-Modes算法采用简单匹配的方法来计算对象之间的距离,并没有充分考虑同一属性下的两个不同值之间的相似性。基于粗糙集中的上、下近似,提出了一种新的距离度量,并重新定义了类中心,对传统K-Modes算法进行了改进。与其他改进K-Mo... 传统的K-Modes算法采用简单匹配的方法来计算对象之间的距离,并没有充分考虑同一属性下的两个不同值之间的相似性。基于粗糙集中的上、下近似,提出了一种新的距离度量,并重新定义了类中心,对传统K-Modes算法进行了改进。与其他改进K-Modes算法进行了比较,实验结果表明,基于粗糙集的改进K-Modes算法有效地提高了聚类精度。 展开更多
关键词 算法 粗糙集 距离度量 k-modes算法
在线阅读 下载PDF
基于分类型矩阵对象数据的MD fuzzy k-modes聚类算法 被引量:10
4
作者 李顺勇 张苗苗 曹付元 《计算机研究与发展》 EI CSCD 北大核心 2019年第6期1325-1337,共13页
传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,... 传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,针对矩阵对象数据聚类算法的研究相对较少,还有很多问题有待解决.利用fuzzy k-modes算法的聚类过程,提出一种基于矩阵对象数据的matrix-object data fuzzy k-modes(MD fuzzy k-modes)聚类算法.该算法结合模糊集的概念引入模糊因子β,重新定义了矩阵对象间的相异性度量,并给出类中心的启发式更新算法.最后,在5个真实数据集上验证了MD fuzzy k-modes算法的有效性,并分析了模糊因子β与隶属度w之间的关系.大数据时代,利用MD fuzzy k-modes算法对多条记录进行聚类,能更易发现顾客的消费偏好,从而做出更有针对性的推荐. 展开更多
关键词 矩阵对象数据 MD FUZZY k-modes算法 相异性度量 中心
在线阅读 下载PDF
基于新的距离度量的K-Modes聚类算法 被引量:46
5
作者 梁吉业 白亮 曹付元 《计算机研究与发展》 EI CSCD 北大核心 2010年第10期1749-1755,共7页
传统的K-Modes聚类算法采用简单的0-1匹配差异方法来计算同一分类属性下两个属性值之间的距离,没有充分考虑其相似性.对此,基于粗糙集理论,提出了一种新的距离度量.该距离度量在度量同一分类属性下两个属性值之间的差异时,克服了简单0-... 传统的K-Modes聚类算法采用简单的0-1匹配差异方法来计算同一分类属性下两个属性值之间的距离,没有充分考虑其相似性.对此,基于粗糙集理论,提出了一种新的距离度量.该距离度量在度量同一分类属性下两个属性值之间的差异时,克服了简单0-1匹配差异法的不足,既考虑了它们本身的异同,又考虑了其他相关分类属性对它们的区分性.并将提出的距离度量应用于传统K-Modes聚类算法中.通过与基于其他距离度量的K-Modes聚类算法进行实验比较,结果表明新的距离度量是更加有效的. 展开更多
关键词 算法 属性数据 粗糙集 粗糙隶属度 距离度量
在线阅读 下载PDF
基于新的相异度量的模糊K-Modes聚类算法 被引量:5
6
作者 白亮 曹付元 梁吉业 《计算机工程》 CAS CSCD 北大核心 2009年第16期192-194,共3页
传统的模糊K-Modes聚类算法采用简单匹配方法度量对象与Mode之间的相异程度,没有充分考虑Mode对类的代表程度,容易造成信息的丢失,弱化了类内的相似性。针对上述问题,通过对象对类的隶属度反映Mode对类的代表程度,提出一种新的相异度量... 传统的模糊K-Modes聚类算法采用简单匹配方法度量对象与Mode之间的相异程度,没有充分考虑Mode对类的代表程度,容易造成信息的丢失,弱化了类内的相似性。针对上述问题,通过对象对类的隶属度反映Mode对类的代表程度,提出一种新的相异度量,并将它应用于传统的模糊K-Modes聚类算法。与传统的K-Modes和模糊K-Modes聚类算法相比,该相异度量是有效的。 展开更多
关键词 模糊K—Modes算法 相异度量 中心
在线阅读 下载PDF
MapReduce框架下运用K-modes聚类算法进行日负荷曲线预测
7
作者 李彦 王颖 +1 位作者 廖一鸣 赵文硕 《计算机与数字工程》 2016年第2期230-232,316,共4页
提出一种MapReduce框架下运用K-modes聚类算法,并基于电力大数据对日负荷曲线进行预测的方法。将预测结果与传统K-modes聚类算法的预测结果进行对比,结果表明:K-modes聚类算法进行分布式处理的方法是可行的,使用这种方法对日负荷曲线进... 提出一种MapReduce框架下运用K-modes聚类算法,并基于电力大数据对日负荷曲线进行预测的方法。将预测结果与传统K-modes聚类算法的预测结果进行对比,结果表明:K-modes聚类算法进行分布式处理的方法是可行的,使用这种方法对日负荷曲线进行预测效果更好,提高了预测的精确性,更好地指导电力生产。 展开更多
关键词 大数据 MAPREDUCE k-modes聚类算法 日负荷曲线预测
在线阅读 下载PDF
基于贝叶斯距离的K-modes聚类算法 被引量:5
8
作者 赵亮 刘建辉 张昭昭 《计算机工程与科学》 CSCD 北大核心 2017年第1期188-193,共6页
K-modes算法中原有的分类变量间距离度量方法无法体现属性值之间差异,对此提出了一种基于朴素贝叶斯分类器中间运算结果的距离度量。该度量构建代表分类变量的特征向量并计算向量间的欧氏距离作为变量间的距离。将提出的距离度量代入K-m... K-modes算法中原有的分类变量间距离度量方法无法体现属性值之间差异,对此提出了一种基于朴素贝叶斯分类器中间运算结果的距离度量。该度量构建代表分类变量的特征向量并计算向量间的欧氏距离作为变量间的距离。将提出的距离度量代入K-modes聚类算法并在多个UCI公共数据集上与其他度量方法进行比较,实验结果表明该距离度量更加有效。 展开更多
关键词 K—modes算法 变量 朴素贝叶斯分 距离度量
在线阅读 下载PDF
分类矩阵对象数据的BC-k-modes聚类算法 被引量:1
9
作者 李顺勇 余曼 王改变 《河南科学》 2020年第10期1549-1557,共9页
为了对含有多个特征向量的分类矩阵对象数据进行描述,提出了一种新的基于簇间信息的分类矩阵对象数据的聚类算法(between-cluster k-modes,简称BC-k-modes).该算法利用k-modes算法的聚类过程,对分类矩阵对象数据进行聚类,导出隶属度矩... 为了对含有多个特征向量的分类矩阵对象数据进行描述,提出了一种新的基于簇间信息的分类矩阵对象数据的聚类算法(between-cluster k-modes,简称BC-k-modes).该算法利用k-modes算法的聚类过程,对分类矩阵对象数据进行聚类,导出隶属度矩阵与聚类原型的更新公式,通过增加簇间信息对目标函数寻求局部最优解.最后在五个真实数据集上进行了实验,结果表明该算法对真实数据的聚类效果明显优于其他算法. 展开更多
关键词 簇间信息 矩阵对象数据 隶属度矩阵 中心 算法
在线阅读 下载PDF
基于新相异度量的模糊K-Modes聚类算法 被引量:2
10
作者 张月琴 陈彩棠 《电脑开发与应用》 2012年第5期32-34,共3页
提出了一种基于新相异度量的模糊K-Modes算法。该算法假定不同属性对聚类结果有不同程度的影响,定义了新的属性值函数,以基于划分相似度的聚类精确度作为聚类结果的评价准则。通过真实数据的实验结果表明,新的基于相异度量的模糊K-Mode... 提出了一种基于新相异度量的模糊K-Modes算法。该算法假定不同属性对聚类结果有不同程度的影响,定义了新的属性值函数,以基于划分相似度的聚类精确度作为聚类结果的评价准则。通过真实数据的实验结果表明,新的基于相异度量的模糊K-Modes算法比传统的模糊K-Modes算法有更好的聚类效果。 展开更多
关键词 K—Modes算法 相异度量 属性
在线阅读 下载PDF
基于K-modes聚类算法的辽宁传统村落划分及保护策略
11
作者 张宇 杜晓月 董丽 《住宅产业》 2023年第5期22-26,共5页
本文基于传统村落的自然环境、人文历史、民居建筑等分类特征,使用K-modes聚类算法,对辽宁省30个国家级传统村落进行聚类划分,将其整合为景区依托型、民族特色型、生态文化型、休闲观光型、文化遗产型共五个类别,最后根据归纳的聚类典... 本文基于传统村落的自然环境、人文历史、民居建筑等分类特征,使用K-modes聚类算法,对辽宁省30个国家级传统村落进行聚类划分,将其整合为景区依托型、民族特色型、生态文化型、休闲观光型、文化遗产型共五个类别,最后根据归纳的聚类典型特征,提出有针对性的辽宁省传统村落保护发展策略。 展开更多
关键词 辽宁地区 传统村落 k-modes
在线阅读 下载PDF
粗糙K-Modes聚类算法 被引量:5
12
作者 李仁侃 叶东毅 《计算机应用》 CSCD 北大核心 2011年第1期97-100,共4页
Michael K.Ng等人提出了新K-Modes聚类算法,它采用基于相对频率的启发式相异度度量方法,有效地提高了聚类精度,但不足的是在计算各类的属性分类值频率时假定类中样本对聚类的贡献相同。为了考虑类中样本对类中心的不同影响,提出一种粗糙... Michael K.Ng等人提出了新K-Modes聚类算法,它采用基于相对频率的启发式相异度度量方法,有效地提高了聚类精度,但不足的是在计算各类的属性分类值频率时假定类中样本对聚类的贡献相同。为了考虑类中样本对类中心的不同影响,提出一种粗糙K-Modes算法,通过粗糙集的上、下近似度量数据样本在类内的重要性程度,不仅可以获得比新K-Modes算法更好的聚类效果,而且可以在保证聚类效果的基础上降低白亮等人提出的基于粗糙集改进的K-Modes算法的计算复杂度。对几个UCI的数据集的测试实验结果显示出新算法的优良性能。 展开更多
关键词 K—Modes算法 粗糙集 中心 精度
在线阅读 下载PDF
基于K-modes聚类算法的安徽历史文化名村分类及保护发展策略
13
作者 张泉 薛珊珊 邹成东 《华中建筑》 2023年第1期23-27,共5页
以安徽省44个省级以上历史文化名村为研究对象,分析其空间分布特征与保护管理现状,并探讨影响其类型划分的具体因素。同时,借鉴学者关于历史文化名村和传统村落分类的研究,以地理条件、产业经济、社会生活、历史文化为主要维度,构建形... 以安徽省44个省级以上历史文化名村为研究对象,分析其空间分布特征与保护管理现状,并探讨影响其类型划分的具体因素。同时,借鉴学者关于历史文化名村和传统村落分类的研究,以地理条件、产业经济、社会生活、历史文化为主要维度,构建形成安徽历史文化名村类型划分的指标体系。基于此,运用K-modes聚类算法,将安徽历史文化名村划分为生态宜居型、文旅资源型、特色民俗型、综合发展型四种类型,并总结各类历史文化名村的典型特征,进而提出相应的保护与发展策略。 展开更多
关键词 历史文化名村 k-modes 算法 保护发展策略 安徽
在线阅读 下载PDF
一种改进的k-modes聚类算法 被引量:6
14
作者 施振佺 陈世平 《运筹与管理》 CSSCI CSCD 北大核心 2019年第12期112-117,共6页
传统的K-modes算法采用了简单的0-1匹配来计算属性间的相异度,后改进为频率计算相异度,但是他们都忽略了各属性间的差异。本文研究了基于粗糙集和知识粒度的属性加权算法,该算法既克服了属性的冗余问题又综合考虑了各属性间的差异。在... 传统的K-modes算法采用了简单的0-1匹配来计算属性间的相异度,后改进为频率计算相异度,但是他们都忽略了各属性间的差异。本文研究了基于粗糙集和知识粒度的属性加权算法,该算法既克服了属性的冗余问题又综合考虑了各属性间的差异。在此基础上,通过对传统K-modes算法进行属性加权来改进K-modes算法中忽略的属性间差异问题。通过与其他的K-Modes算法进行实验比较,结果表明新的算法更加有效的。 展开更多
关键词 算法 属性数据 粗糙集 知识粒度 距离度量
在线阅读 下载PDF
一种改进的K-Modes聚类算法 被引量:1
15
作者 石隽锋 白妙青 《现代电子技术》 北大核心 2015年第4期39-41,45,共4页
传统的K-Modes算法采用0-1简单匹配方法计算对象与类中心(Modes)之间的距离,并将每个对象分配到离它最近的类中去。采用基于频率方法重新计算各类的类中心(Modes)、定义目标函数,然而,对象的归类方法和目标函数的定义没有充分考虑分类... 传统的K-Modes算法采用0-1简单匹配方法计算对象与类中心(Modes)之间的距离,并将每个对象分配到离它最近的类中去。采用基于频率方法重新计算各类的类中心(Modes)、定义目标函数,然而,对象的归类方法和目标函数的定义没有充分考虑分类数据的特点。对此,提出一种改进的K-Modes算法,采用期望熵最小的衡量方法进行归类,并且采用期望熵作为新的目标函数。通过实验将该算法与传统的K-Modes算法进行比较,表明该算法是更有效的。 展开更多
关键词 型数据 算法 期望熵 目标函数 精度
在线阅读 下载PDF
一种改进的K-Modes聚类算法 被引量:7
16
作者 贾彬 梁毅 苏航 《软件导刊》 2019年第6期60-64,69,共6页
为了改善传统K-Modes聚类算法相异度度量公式弱化了类内相似性,忽略了属性间差异,以及单一属性值的Modes忽视了某一属性可能存在多属性值组合,且算法受初始中心点影响很大的缺点,基于多属性值Modes的相异度度量方法提出MAV-K-Modes算法... 为了改善传统K-Modes聚类算法相异度度量公式弱化了类内相似性,忽略了属性间差异,以及单一属性值的Modes忽视了某一属性可能存在多属性值组合,且算法受初始中心点影响很大的缺点,基于多属性值Modes的相异度度量方法提出MAV-K-Modes算法,并采用一种基于预聚类的初始中心选取方法。使用UCI数据集进行实验,结果表明,MAV-K-Modes算法相比于传统K-Modes算法,其正确率、类精度和召回率都有明显提升,且MAV-K-Modes算法适合于并行化改造。 展开更多
关键词 算法 相异度度量 初始中心点 多属性值Modes k-modes
在线阅读 下载PDF
基于主成分分析算法和K均值聚类算法的药品库存分类管理
17
作者 唐蕾 邱磊 +1 位作者 俞佳慧 冀召帅 《医药导报》 北大核心 2025年第4期682-686,共5页
目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算... 目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算法和K均值聚类(K-means)算法对研究对象进行分类。结果确定轮廓系数为0.3470的分类数4为最佳分类数,将700种药品分为4类,其中有363种归为第一类,186种归为第二类,94种归为第三类,57种归为第四类。将该文研究的药品分类方法模拟运用到某三级医院2023年第二季度的药品库存管理中,模拟结果表明该分类方法能够降低库存成本,提高库存有效性。结论基于PCA算法和K-means聚类算法的药品分类方法能够为药品库存分类管理提供可靠依据。 展开更多
关键词 药品分 主成分分析算法 K均值算法 药品库存管理
在线阅读 下载PDF
基于多策略蜂群算法的大学英语翻译聚类分析
18
作者 王奕 李红春 《商丘师范学院学报》 2025年第3期26-29,共4页
采用多策略蜂群算法进行英语翻译聚类,以平衡蜂群算法聚类过程中的探索与开发能力.以英语翻译语法特征样本集为对象,基于多策略蜂群算法对误译特征实施聚类.多策略蜂群算法在雇佣蜂阶段使用种群多样性提升策略,应用高斯分布三项式搜索策... 采用多策略蜂群算法进行英语翻译聚类,以平衡蜂群算法聚类过程中的探索与开发能力.以英语翻译语法特征样本集为对象,基于多策略蜂群算法对误译特征实施聚类.多策略蜂群算法在雇佣蜂阶段使用种群多样性提升策略,应用高斯分布三项式搜索策略,高斯分布项创造了更多步长组合可能,提升误译特征解逃出局部最优的概率;在观察蜂阶段应用种群子集分配机制,将英语翻译语法特征种群划分为自由子集和非自由子集,不同子集个体采用不同子策略.实验结果显示,该方法可以准确给出误译聚类结果,F1最高可达0.985,误译特征聚类的准确性和完整性较强. 展开更多
关键词 多策略 蜂群算法 高斯分布 子集
在线阅读 下载PDF
基于密度聚类的三支K-Means聚类算法
19
作者 李志聪 晏啸昊 《计算机科学与应用》 2025年第1期246-255,共10页
本文提出了一种基于密度聚类的三支K-Means算法。针对传统的K-Means算法在选取初始聚类中心时往往依赖于随机选择和无法处理不确定性数据对象的问题,本文采用基于密度聚类算法优化初始聚类中心的选择,并优化了截断距离的选取,最后使用... 本文提出了一种基于密度聚类的三支K-Means算法。针对传统的K-Means算法在选取初始聚类中心时往往依赖于随机选择和无法处理不确定性数据对象的问题,本文采用基于密度聚类算法优化初始聚类中心的选择,并优化了截断距离的选取,最后使用三支决策的方法对聚类结果进行处理。实验结果表明,与传统的K-Means算法相比,改进的K-Means算法在聚类中表现出更高的聚类精度和稳定性。This paper proposes a three-branch K-Means algorithm based on density clustering. In view of the problem that the traditional K-Means algorithm often relies on random selection and cannot handle uncertain data objects when selecting initial clustering centers, this paper uses a density-based clustering algorithm to optimize the selection of initial clustering centers, and optimizes the selection of truncation distance. Finally, a three-branch decision method is used to process the clustering results. The experimental results show that the improved K-Means algorithm exhibits higher clustering accuracy and stability in clustering compared to the traditional K-Means algorithm. 展开更多
关键词 K-MEANS算法 密度 三支决策
在线阅读 下载PDF
结合局部核心和共享概念的数据挖掘层次聚类算法研究
20
作者 赵宏岩 邬昌兴 《齐齐哈尔大学学报(自然科学版)》 2025年第2期46-52,共7页
聚类算法存在计算难度大、计算时间长等问题。为此,研究基于自然邻居搜索算法和改进局部核心点搜索算法搜索局部核心点,并结合共享概念对簇进行分类,实现对数据集的层次化分析。结果表明,所提算法的运行时间最短,在4个数据集上的运行时... 聚类算法存在计算难度大、计算时间长等问题。为此,研究基于自然邻居搜索算法和改进局部核心点搜索算法搜索局部核心点,并结合共享概念对簇进行分类,实现对数据集的层次化分析。结果表明,所提算法的运行时间最短,在4个数据集上的运行时间分别为0.0744,2.2903,5.1121,90.7067s。所提算法在5个数据集中的聚类准确度分别为99.57%,100%,100%,89.58%,98.75%,在NMI指标方面的表现仍然优于另外3种算法。 展开更多
关键词 局部核心 数据挖掘 算法 共享 自然邻域图
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部