An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partia...An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partial least squares(MPLS),are not suitable due to their intrinsic linearity when the variations are nonlinear.To address this issue,kernel partial least squares(KPLS) was used to capture the nonlinear relationship between the latent structures and predictive variables.In addition,KPLS requires only linear algebra and does not involve any nonlinear optimization.In this paper,the application of KPLS was extended to on-line monitoring of batch processes.The proposed batch monitoring method was applied to a simulation benchmark of fed-batch penicillin fermentation process.And the results demonstrate the superior monitoring performance of MKPLS in comparison to MPLS monitoring.展开更多
Based on continuum power regression(CPR) method, a novel derivation of kernel partial least squares(named CPR-KPLS) regression is proposed for approximating arbitrary nonlinear functions.Kernel function is used to map...Based on continuum power regression(CPR) method, a novel derivation of kernel partial least squares(named CPR-KPLS) regression is proposed for approximating arbitrary nonlinear functions.Kernel function is used to map the input variables(input space) into a Reproducing Kernel Hilbert Space(so called feature space),where a linear CPR-PLS is constructed based on the projection of explanatory variables to latent variables(components). The linear CPR-PLS in the high-dimensional feature space corresponds to a nonlinear CPR-KPLS in the original input space. This method offers a novel extension for kernel partial least squares regression(KPLS),and some numerical simulation results are presented to illustrate the feasibility of the proposed method.展开更多
Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classi...Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classification rate of kernel partial least squares-discriminant analysis was 100% for training set, and 100% for test set, with the lowest concentration detected malathion residues in water being 1 μg·ml-1. Kernel partial least squares-discriminant analysis was able to have a good performance in classifying data in nonlinear systems. It was inferred that Near-infrared spectroscopy coupled with the kernel partial least squares-discriminant analysis had a potential in rapid screening other pesticide residues in water.展开更多
针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法...针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法依据新样本与建模样本间的近似线性依靠(Approximate linear dependence,ALD)值和代表工业过程特性漂移幅度的阈值,选择有价值样本更新KPLS模型,并采用合成数据和Benchmark平台数据对该方法进行了仿真验证.针对基于离线历史数据建立的融合多传感器信息的磨机负荷参数集成模型难以适应磨矿过程时变特性的问题,提出了基于OLKPLS和在线自适应加权融合算法的在线集成建模方法,并通过实验球磨机的实际运行数据仿真验证了方法的有效性.展开更多
Environmental protection requires identifying,investigating,and raising awareness about safeguarding nature from the harmful effects of both anthropogenic and natural events.This process of environmental protection is...Environmental protection requires identifying,investigating,and raising awareness about safeguarding nature from the harmful effects of both anthropogenic and natural events.This process of environmental protection is essential for maintaining human well-being.In this context,it is critical to monitor and safeguard the personal environment,which includes maintaining a healthy diet and ensuring plant safety.Living in a balanced environment and ensuring the safety of plants for green spaces and a healthy diet require controlling the nature and quality of the soil in our environment.To ensure soil quality,it is imperative to monitor and assess the levels of various soil parameters.Therefore,an Optimized Reduced Kernel Partial Least Squares(ORKPLS)method is proposed to monitor and control soil parameters.This approach is designed to detect increases or deviations in soil parameter quantities.A Tabu search approach was used to select the appropriate kernel parameter.Subsequently,soil analyses were conducted to evaluate the performance of the developed techniques.The simulation results were analyzed and compared.Through this study,deficiencies or exceedances in soil parameter quantities can be identified.The proposed method involves determining whether each soil parameter falls within a normal range.This allows for the assessment of soil parameter conditions based on the principle of fault detection.展开更多
作为钢铁冶金制造的核心工序,高炉炼铁是典型的高能耗过程,其运行能耗约占钢铁总能耗的50%以上,其中,80%的能耗是焦炭和煤粉等燃料消耗.因此,对表征高炉燃料消耗的燃料比参数进行监测,并尽可能早地识别影响燃料比异常波动的关键因素,对...作为钢铁冶金制造的核心工序,高炉炼铁是典型的高能耗过程,其运行能耗约占钢铁总能耗的50%以上,其中,80%的能耗是焦炭和煤粉等燃料消耗.因此,对表征高炉燃料消耗的燃料比参数进行监测,并尽可能早地识别影响燃料比异常波动的关键因素,对于高炉炼铁过程的节能降耗具有重要意义.本文针对先验故障知识少的高炉燃料比监测与异常识别难题,提出一种基于核偏最小二乘(Kernel partial least squares,KPLS)鲁棒重构误差的故障识别方法.该方法首先建立过程变量与监测变量的KPLS监测模型,然后根据非线性映射空间的协方差矩阵和核空间Gram矩阵之间的关系,反向估计原始空间变量的正常估值.为了增强算法的鲁棒性,采用迭代去噪算法减少异常数据对原始空间正常估值的影响.通过利用原始空间正常估值和真实值来构造故障识别指标,并给出故障识别指标的控制限.基于实际工业数据的高炉数据实验表明所提方法不仅可以监测出正常工况下影响燃料比异常变化的潜在因素,还可识别出异常工况下影响燃料比异常变化的关键因素,具有很好的工程应用前景.展开更多
In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new...In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in comparison to KPLS monitoring.展开更多
基金National Natural Science Foundation of China (No. 61074079)Shanghai Leading Academic Discipline Project,China (No.B504)
文摘An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partial least squares(MPLS),are not suitable due to their intrinsic linearity when the variations are nonlinear.To address this issue,kernel partial least squares(KPLS) was used to capture the nonlinear relationship between the latent structures and predictive variables.In addition,KPLS requires only linear algebra and does not involve any nonlinear optimization.In this paper,the application of KPLS was extended to on-line monitoring of batch processes.The proposed batch monitoring method was applied to a simulation benchmark of fed-batch penicillin fermentation process.And the results demonstrate the superior monitoring performance of MKPLS in comparison to MPLS monitoring.
文摘Based on continuum power regression(CPR) method, a novel derivation of kernel partial least squares(named CPR-KPLS) regression is proposed for approximating arbitrary nonlinear functions.Kernel function is used to map the input variables(input space) into a Reproducing Kernel Hilbert Space(so called feature space),where a linear CPR-PLS is constructed based on the projection of explanatory variables to latent variables(components). The linear CPR-PLS in the high-dimensional feature space corresponds to a nonlinear CPR-KPLS in the original input space. This method offers a novel extension for kernel partial least squares regression(KPLS),and some numerical simulation results are presented to illustrate the feasibility of the proposed method.
文摘Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classification rate of kernel partial least squares-discriminant analysis was 100% for training set, and 100% for test set, with the lowest concentration detected malathion residues in water being 1 μg·ml-1. Kernel partial least squares-discriminant analysis was able to have a good performance in classifying data in nonlinear systems. It was inferred that Near-infrared spectroscopy coupled with the kernel partial least squares-discriminant analysis had a potential in rapid screening other pesticide residues in water.
文摘针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法依据新样本与建模样本间的近似线性依靠(Approximate linear dependence,ALD)值和代表工业过程特性漂移幅度的阈值,选择有价值样本更新KPLS模型,并采用合成数据和Benchmark平台数据对该方法进行了仿真验证.针对基于离线历史数据建立的融合多传感器信息的磨机负荷参数集成模型难以适应磨矿过程时变特性的问题,提出了基于OLKPLS和在线自适应加权融合算法的在线集成建模方法,并通过实验球磨机的实际运行数据仿真验证了方法的有效性.
基金supported by the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(0226-1443-S).
文摘Environmental protection requires identifying,investigating,and raising awareness about safeguarding nature from the harmful effects of both anthropogenic and natural events.This process of environmental protection is essential for maintaining human well-being.In this context,it is critical to monitor and safeguard the personal environment,which includes maintaining a healthy diet and ensuring plant safety.Living in a balanced environment and ensuring the safety of plants for green spaces and a healthy diet require controlling the nature and quality of the soil in our environment.To ensure soil quality,it is imperative to monitor and assess the levels of various soil parameters.Therefore,an Optimized Reduced Kernel Partial Least Squares(ORKPLS)method is proposed to monitor and control soil parameters.This approach is designed to detect increases or deviations in soil parameter quantities.A Tabu search approach was used to select the appropriate kernel parameter.Subsequently,soil analyses were conducted to evaluate the performance of the developed techniques.The simulation results were analyzed and compared.Through this study,deficiencies or exceedances in soil parameter quantities can be identified.The proposed method involves determining whether each soil parameter falls within a normal range.This allows for the assessment of soil parameter conditions based on the principle of fault detection.
文摘作为钢铁冶金制造的核心工序,高炉炼铁是典型的高能耗过程,其运行能耗约占钢铁总能耗的50%以上,其中,80%的能耗是焦炭和煤粉等燃料消耗.因此,对表征高炉燃料消耗的燃料比参数进行监测,并尽可能早地识别影响燃料比异常波动的关键因素,对于高炉炼铁过程的节能降耗具有重要意义.本文针对先验故障知识少的高炉燃料比监测与异常识别难题,提出一种基于核偏最小二乘(Kernel partial least squares,KPLS)鲁棒重构误差的故障识别方法.该方法首先建立过程变量与监测变量的KPLS监测模型,然后根据非线性映射空间的协方差矩阵和核空间Gram矩阵之间的关系,反向估计原始空间变量的正常估值.为了增强算法的鲁棒性,采用迭代去噪算法减少异常数据对原始空间正常估值的影响.通过利用原始空间正常估值和真实值来构造故障识别指标,并给出故障识别指标的控制限.基于实际工业数据的高炉数据实验表明所提方法不仅可以监测出正常工况下影响燃料比异常变化的潜在因素,还可识别出异常工况下影响燃料比异常变化的关键因素,具有很好的工程应用前景.
基金Supported by the Special Scientific Research of Selection and Cultivation of Excellent Young Teachers in Shanghai Universities(YYY11076)
文摘In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in comparison to KPLS monitoring.