Lucas-Kanade(LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of th...Lucas-Kanade(LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging,a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.展开更多
Apple fruits on trees tend to swing because of wind or other natural causes,therefore reducing the accuracy of apple picking by robots.To increase the accuracy and to speed up the apple tracking and identifying proces...Apple fruits on trees tend to swing because of wind or other natural causes,therefore reducing the accuracy of apple picking by robots.To increase the accuracy and to speed up the apple tracking and identifying process,tracking and recognition method combined with an affine transformation was proposed.The method can be divided into three steps.First,the initial image was segmented by Otsu’s thresholding method based on the two times Red minus Green minus Blue(2R-G-B)color feature;after improving the binary image,the apples were recognized with a local parameter adaptive Hough circle transformation method,thus improving the accuracy of recognition and avoiding the long,time-consuming process and excessive fitted circles in traditional Hough circle transformation.The process and results were verified experimentally.Second,the Shi-Tomasi corners detected and extracted from the first frame image were tracked,and the corners with large positive and negative optical flow errors were removed.The affine transformation matrix between the two frames was calculated based on the Random Sampling Consistency algorithm(RANSAC)to correct the scale of the template image and predict the apple positions.Third,the best positions of the target apples within 1.2 times of the prediction area were searched with a de-mean normalized cross-correlation template matching algorithm.The test results showed that the running time of each frame was 25 ms and 130 ms and the tracking error was more than 8%and 20%in the absence of template correction and apple position prediction,respectively.In comparison,the running time of our algorithm was 25 ms,and the tracking error was less than 4%.Therefore,test results indicate that speed and efficiency can be greatly improved by using our method,and this strategy can also provide a reference for tracking and recognizing other oscillatory fruits.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11372001 and 11490552)
文摘Lucas-Kanade(LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging,a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.
基金This work was financially supported by Basic Public Welfare Research Project of Zhejiang Province(Grant No.LGN20E050007).
文摘Apple fruits on trees tend to swing because of wind or other natural causes,therefore reducing the accuracy of apple picking by robots.To increase the accuracy and to speed up the apple tracking and identifying process,tracking and recognition method combined with an affine transformation was proposed.The method can be divided into three steps.First,the initial image was segmented by Otsu’s thresholding method based on the two times Red minus Green minus Blue(2R-G-B)color feature;after improving the binary image,the apples were recognized with a local parameter adaptive Hough circle transformation method,thus improving the accuracy of recognition and avoiding the long,time-consuming process and excessive fitted circles in traditional Hough circle transformation.The process and results were verified experimentally.Second,the Shi-Tomasi corners detected and extracted from the first frame image were tracked,and the corners with large positive and negative optical flow errors were removed.The affine transformation matrix between the two frames was calculated based on the Random Sampling Consistency algorithm(RANSAC)to correct the scale of the template image and predict the apple positions.Third,the best positions of the target apples within 1.2 times of the prediction area were searched with a de-mean normalized cross-correlation template matching algorithm.The test results showed that the running time of each frame was 25 ms and 130 ms and the tracking error was more than 8%and 20%in the absence of template correction and apple position prediction,respectively.In comparison,the running time of our algorithm was 25 ms,and the tracking error was less than 4%.Therefore,test results indicate that speed and efficiency can be greatly improved by using our method,and this strategy can also provide a reference for tracking and recognizing other oscillatory fruits.