针对实际点云数据中存在的噪点与缺陷对拟合平面时带来的影响,提出一种基于最小平方中值算法(least median of squares,LMedS)与距离加权总体最小二乘法(weighted total least squares based on distance,WTLSD)相结合的平面拟合算法。...针对实际点云数据中存在的噪点与缺陷对拟合平面时带来的影响,提出一种基于最小平方中值算法(least median of squares,LMedS)与距离加权总体最小二乘法(weighted total least squares based on distance,WTLSD)相结合的平面拟合算法。通过最小平方中值算法初步去除点云中的噪点,并基于距离构建初始权重矩阵,利用距离加权总体最小二乘法对点云进行平面拟合,减少平面中凸起与凹陷等缺陷对平面拟合的影响,该算法与传统平面拟合算法相比具备消除异常点与平面缺陷的优点,具备更高的拟合精度;与随机采样一致性算法(random sample consensus,RANSAC)相比具有更高的拟合效率与相近的拟合精度。展开更多
针对基于最小二乘支持向量机(least squares support vector machine,LSSVM)高程拟合模型存在参数选取随机的局限性,本文将果蝇优化算法(fruit fly optimization algorithm,FOA)引入到灰色最小二乘支持向量机(grey least square support...针对基于最小二乘支持向量机(least squares support vector machine,LSSVM)高程拟合模型存在参数选取随机的局限性,本文将果蝇优化算法(fruit fly optimization algorithm,FOA)引入到灰色最小二乘支持向量机(grey least square support vector machine,GLSSVM)高程拟合模型中,建立了基于FOA的GLSSVM拟合模型.为了验证提出模型的有效性,结合工程实例,并与GLSSVM、LSSVM进行对比分析,结果表明提出模型具有收敛快、精度高的特点,为GNSS高程拟合提供了新的思路.展开更多
针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和...针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和混合核函数方法对LSSVM算法进行优化,并用优化后的LSSVM求解农杆菌ATCC31749发酵过程动力学模型,结合鸟群算法对动力学模型参数进行寻优;然后拟合出溶氧体积分数和各参数之间的关联函数模型,并代入到动力学模型,建立起以溶氧浓度作为关键控制变量的发酵动力学模型;最后,用鸟群算法对模型进行寻优,寻找使得发酵产物浓度最大的最优溶氧过程控制策略。实验仿真结果表明,混合模型的预测精度得到提高,产多糖期溶氧体积分数控制为52%时,产物质量浓度最大,为48.85 g/L。该研究所建立的农杆菌发酵过程混合模型及其溶氧优化结果,为发酵工业上进一步通过最佳溶氧控制策略来提高多糖产量提供了方向。展开更多
文摘针对实际点云数据中存在的噪点与缺陷对拟合平面时带来的影响,提出一种基于最小平方中值算法(least median of squares,LMedS)与距离加权总体最小二乘法(weighted total least squares based on distance,WTLSD)相结合的平面拟合算法。通过最小平方中值算法初步去除点云中的噪点,并基于距离构建初始权重矩阵,利用距离加权总体最小二乘法对点云进行平面拟合,减少平面中凸起与凹陷等缺陷对平面拟合的影响,该算法与传统平面拟合算法相比具备消除异常点与平面缺陷的优点,具备更高的拟合精度;与随机采样一致性算法(random sample consensus,RANSAC)相比具有更高的拟合效率与相近的拟合精度。
文摘针对基于最小二乘支持向量机(least squares support vector machine,LSSVM)高程拟合模型存在参数选取随机的局限性,本文将果蝇优化算法(fruit fly optimization algorithm,FOA)引入到灰色最小二乘支持向量机(grey least square support vector machine,GLSSVM)高程拟合模型中,建立了基于FOA的GLSSVM拟合模型.为了验证提出模型的有效性,结合工程实例,并与GLSSVM、LSSVM进行对比分析,结果表明提出模型具有收敛快、精度高的特点,为GNSS高程拟合提供了新的思路.