期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models
1
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
Uncertainties of landslide susceptibility prediction:influences of different study area scales and mapping unit scales
2
作者 Faming Huang Yu Cao +4 位作者 Wenbin Li Filippo Catani Guquan Song Jinsong Huang Changshi Yu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期143-172,共30页
This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou Ci... This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit. 展开更多
关键词 landslide susceptibility prediction Uncertainty analysis Study areas scales mapping unit scales Slope units Random forest
在线阅读 下载PDF
A physics-informed machine learning solution for landslide susceptibility mapping based on three-dimensional slope stability evaluation
3
作者 WANG Yun-hao WANG Lu-qi +4 位作者 ZHANG Wen-gang LIU Song-lin SUN Wei-xin HONG Li ZHU Zheng-wei 《Journal of Central South University》 CSCD 2024年第11期3838-3853,共16页
Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection... Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance. 展开更多
关键词 machine learning physics-informed model negative samples selection INTERPRETABILITY landslide susceptibility mapping
在线阅读 下载PDF
Decoding vegetation's role in landslide susceptibility mapping:An integrated review of techniques and future directions
4
作者 Yangyang Lia Wenhui Duan 《Biogeotechnics》 2024年第1期11-22,共12页
Rainfall-induced landslides,exacerbated by climate change,require urgent attention to identify vulnerable regions and propose effective risk mitigation measures.Extensive research underscores the significant impact of... Rainfall-induced landslides,exacerbated by climate change,require urgent attention to identify vulnerable regions and propose effective risk mitigation measures.Extensive research underscores the significant impact of vegetation on soil properties and slope stability,emphasizing the necessity to incorporate vegetation effects into regional landslide susceptibility mapping.This review thoroughly examines research integrating vegetation into landslide susceptibility mapping,encompassing qualitative,semi-quantitative,and quantitative forecasting methods.It highlights the importance of incorporating vegetation aspects into these methods for comprehensive and accurate landslide susceptibility assessment.This review explores the diverse roles of vegetation in slope stability,covering both aggregated impacts and individual influences,including mechanical and hydrological effects on soil properties,as well as the implications of evapotranspiration and rainwater interception on slope stability.While aggregated roles are integrated into non-deterministic methods as input layers,individual roles are considered in deterministic methods.In the application of deterministic methods,it is noteworthy that a considerable number of studies primarily concentrate on the mechanical impact,particularly the reinforcement provided by root cohesion.The review also explores limitations and highlights future research prospects.In the context of mapping landslide susceptibility amid changing climatic conditions,data-driven techniques encounter challenges,while deterministic methods present their advantages.Stressing the significance of hydrological impacts,the paper recommends incorporating vegetation influences on unsaturated soil properties,including the soil water characteristic curve and soil permeability,along with pre-wetting suction due to evapotranspiration and potential rainwater interception. 展开更多
关键词 landslide susceptibility Maps Vegetation Impacts Land Cover Unsaturated Soil Mechanics Rainfall-Induced landslides
在线阅读 下载PDF
Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree,random forest and information value models 被引量:12
5
作者 CHEN Tao ZHU Li +3 位作者 NIU Rui-qing TRINDER C John PENG Ling LEI Tao 《Journal of Mountain Science》 SCIE CSCD 2020年第3期670-685,共16页
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de... This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR. 展开更多
关键词 mapping landslide susceptibility Gradient BOOSTING decision tree Random FOREST Information value model Three Gorges Reservoir
在线阅读 下载PDF
Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization 被引量:31
6
作者 Xinzhi Zhou Haijia Wen +2 位作者 Yalan Zhang Jiahui Xu Wengang Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期355-373,共19页
The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical ... The present study aims to develop two hybrid models to optimize the factors and enhance the predictive ability of the landslide susceptibility models.For this,a landslide inventory map was created with 406 historical landslides and 2030 non-landslide points,which was randomly divided into two datasets for model training(70%)and model testing(30%).22 factors were initially selected to establish a landslide factor database.We applied the GeoDetector and recursive feature elimination method(RFE)to address factor optimization to reduce information redundancy and collinearity in the data.Thereafter,the frequency ratio method,multicollinearity test,and interactive detector were used to analyze and evaluate the optimized factors.Subsequently,the random forest(RF)model was used to create a landslide susceptibility map with original and optimized factors.The resultant hybrid models GeoDetector-RF and RFE-RF were evaluated and compared by the area under the receiver operating characteristic curve(AUC)and accuracy.The accuracy of the two hybrid models(0.868 for GeoDetector-RF and 0.869 for RFE-RF)were higher than that of the RF model(0.860),indicating that the hybrid models with factor optimization have high reliability and predictability.Both RFE-RF GeoDetector-RF had higher AUC values,respectively 0.863 and 0.860,than RF(0.853).These results confirm the ability of factor optimization methods to improve the performance of landslide susceptibility models. 展开更多
关键词 landslide susceptibility mapping GeoDetector Recursive feature elimination Random forest Factor optimization
在线阅读 下载PDF
Co-seismic Landslide Inventory and Susceptibility Mapping in the 2008 Wenchuan Earthquake Disaster Area,China 被引量:18
7
作者 LI Wei-le HUANG Run-qiu +2 位作者 TANG Chuan XU Qiang Cees van WESTEN 《Journal of Mountain Science》 SCIE CSCD 2013年第3期339-354,共16页
The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruct... The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues. 展开更多
关键词 Wenchuan Earthquake landslide INVENTORY susceptibility mapping Logistic regression
在线阅读 下载PDF
Rapid Susceptibility Mapping of Co-seismic Landslides Triggered by the 2013 Lushan Earthquake Using the Regression Model Developed for the 2008 Wenchuan Earthquake 被引量:8
8
作者 LI Wei-le HUANG Run-qiu +1 位作者 XU Qiang TANG Chuan 《Journal of Mountain Science》 SCIE CSCD 2013年第5期699-715,共17页
The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas. The predictive power of a landslide susceptibility mapping model could be tested in an adja... The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas. The predictive power of a landslide susceptibility mapping model could be tested in an adjacent area of similar geo- environmental conditions to find out the reliability. Both the 2oo8 Wenchuan Earthquake and the 2o13 Lushan Earthquake occurred in the Longmen Mountain seismic zone, with similar topographical and geological conditions. The two earthquakes are both featured by thrust fault and similar seismic mechanism This paper adopted the susceptibility mapping model of co-seismic landslides triggered by Wenchuan earthquake to predict the spatial distribution of landslides induced by Lushan earthquake. Six influencing parameters were taken into consideration: distance from the seismic fault, slope gradient, lithology, distance from drainage, elevation and Peak Ground Acceleration (PGA). The preliminary results suggested that the zones with high susceptibility of co- seismic landslides were mainly distributed in the mountainous areas of Lushan, Baoxing and Tianquan counties. The co-seismic landslide susceptibility map was completed in two days after the quake and sent to the field investigators to provide guidance for rescue and relief work. The predictive power of the susceptibility map was validated by ROC curve analysis method using 2o37 co-seismic landslides in the epicenter area. The AUC value of o.71o indicated that the susceptibility model derived from Wenchuan Earthquake landslides showed good accuracy inpredicting the landslides triggered by Lushan earthquake. 展开更多
关键词 Lushan earthquake landslide susceptibility mapping Logistical regression
在线阅读 下载PDF
Landslide susceptibility mapping using Genetic Algorithm for the Rule Set Production(GARP) model 被引量:6
9
作者 Fatemeh ADINEH Baharak MOTAMEDVAZIRI +1 位作者 Hasan AHMADI Abolfazl MOEINI 《Journal of Mountain Science》 SCIE CSCD 2018年第9期2013-2026,共14页
Investigation on landslide phenomenon is necessary for understanding and delineating the landslide prone and safer places for different land use practices. On this basis, a new model known as genetic algorithm for the... Investigation on landslide phenomenon is necessary for understanding and delineating the landslide prone and safer places for different land use practices. On this basis, a new model known as genetic algorithm for the rule set production was applied in order to assess its efficacy to obtain a better result and a more precise landslide susceptibility map in Klijanerestagh area of Iran. This study considered twelve landslide conditioning factors(LCF) like altitude, slope, aspect, plan curvature, profile curvature, topographic wetness index(TWI), distance from rivers, faults, and roads, land use/cover, and lithology. For modeling purpose, the Genetic Algorithm for the Rule Set Production(GARP) algorithm was applied in order to produce the landslide susceptibility map. Finally, to evaluate the efficacy of the GARP model, receiver operating characteristics curve as well as the Kappa index were employed. Based on these indices, the GARP model predicted the probability of future landslide incidences with the area under the receiver operating characteristics curve(AUC-ROC) values of 0.932, and 0.907 for training and validating datasets, respectively. In addition, Kappa values for the training and validating datasets were computed as 0.775, and 0.716, respectively. Thus, it can be concluded that the GARP algorithm can be a new but effective method for generating landslide susceptibility maps(LSMs). Furthermore, higher contribution of the lithology, distance from roads, and distance from faults was observed, while lower contribution was attributed to soil, profile curvature, and TWI factors. The introduced methodology in this paper can be suggested for other areas with similar topographical and hydrogeological characteristics for land use planning and reducing the landslide damages. 展开更多
关键词 landslide susceptibility mapping GIS GARP model Klijanerestagh watershed Iran
在线阅读 下载PDF
Landslides susceptibility mapping in Guizhou province based on fuzzy theory 被引量:8
10
作者 WANG Wei-dong XIE Cui-ming DU Xiang-gang 《Mining Science and Technology》 EI CAS 2009年第3期399-404,共6页
The purpose of this study was to assess the susceptibility of landslides around the area of Guizhou province based on fuzzy theory.In first instance, slope, elevation, lithology, proximity to tectonic lines, proximity... The purpose of this study was to assess the susceptibility of landslides around the area of Guizhou province based on fuzzy theory.In first instance, slope, elevation, lithology, proximity to tectonic lines, proximity to drainage and annual precipitation were taken as independent, causal factors in this study.A landslide hazard evaluation factor system was established by classifying these factors into more subclasses according to some rules.Secondly, a trapezoidal fuzzy number weighting(TFNW) approach was used to assess the importance of six causal factors to landslides in an ArcGIS environment.Thirdly, a landslide susceptibility map was created based on a weighted linear combination model.According to this susceptibility map, the study area was classified into four categories of landslide susceptibility:low, moderate, high and very high.Finally, in order to verify the results obtained, the susceptibility map and the landslide inventory map were combined in the GIS.In addition, the weighting procedure showed that TFNW is an efficient method for weighting causal landslide factors. 展开更多
关键词 landslides susceptibility mapping fuzzy theory GIS weighted linear combination
在线阅读 下载PDF
GIS and ANN model for landslide susceptibility mapping 被引量:3
11
作者 XU Zeng-wang (State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第3期374-381,共8页
Landslide hazard is as the probability of occurrence of a potentially damaging landslide phenomenon within specified period of time and within a given area. The susceptibility map provides the relative spatial probabi... Landslide hazard is as the probability of occurrence of a potentially damaging landslide phenomenon within specified period of time and within a given area. The susceptibility map provides the relative spatial probability of landslides occurrence. A study is presented of the application of GIS and artificial neural network model to landslide susceptibility mapping, with particular reference to landslides on natural terrain in this paper. The method has been applied to Lantau Island, the largest outlying island within the territory of Hong Kong. A three-level neural network model was constructed and trained by the back-propagate algorithm in the geographical database of the study area. The data in the database includes digital elevation modal and its derivatives, landslides distribution and their attributes, superficial geological maps, vegetation cover, the raingauges distribution and their 14 years 5-minute observation. Based on field inspection and analysis of correlation between terrain variables and landslides frequency, lithology, vegetation cover, slope gradient, slope aspect, slope curvature, elevation, the characteristic value, the rainstorms corresponding to the landslide, and distance to drainage Une are considered to be related to landslide susceptibility in this study. The artificial neural network is then coupled with the ArcView3.2 GIS software to produce the landslide susceptibility map, which classifies the susceptibility into three levels: low, moderate, and high. The results from this study indicate that GIS coupled with artificial neural network model is a flexible and powerful approach to identify the spatial probability of hazards. 展开更多
关键词 GIS artificial neural network model landslide susceptibility mapping
在线阅读 下载PDF
Machine learning solution for regional landslide susceptibility based on fault zone division strategy
12
作者 WANG Yunhao WANG Luqi +5 位作者 LIU Songlin SUN Weixin LIU Pengfei ZHU Lin YANG Wenyu GUO Tong 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1745-1760,共16页
Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study perfor... Landslide susceptibility assessment is an essential tool for disaster prevention and management. In areas with multiple fault zones, the impact of fault zone on slope stability cannot be disregarded. This study performed qualitative analysis of fault zones and proposed a zoning method to assess the landslide susceptibility in Chengkou County, Chongqing Municipality, China. The region within a distance of 1 km from the faults was designated as sub-zone A, while the remaining area was labeled as sub-zone B. To accomplish the assessment, a dataset comprising 388 historical landslides and 388 non-landslide points was used to train the random forest model. 10-fold cross-validation was utilized to select the training and testing datasets for the model. The results of the models were analyzed and discussed, with a focus on model performance and prediction uncertainty. By implementing the proposed division strategy based on fault zone, the accuracy, precision, recall, F-score, and AUC of both two sub-zones surpassed those of the whole region. In comparison to the results obtained for the whole region, sub-zone B exhibited an increase in AUC by 6.15%, while sub-zone A demonstrated a corresponding increase of 1.66%. Moreover, the results of 100 random realizations indicated that the division strategy has little effect on the prediction uncertainty. This study introduces a novel approach to enhance the prediction accuracy of the landslide susceptibility mapping model in areas with multiple fault zones. 展开更多
关键词 landslide susceptibility mapping Fault division strategy Random forest GIS
在线阅读 下载PDF
GIS Based Landslide Susceptibility Mapping with Application of Analytical Hierarchy Process in District Ghizer, Gilgit Baltistan Pakistan 被引量:3
13
作者 Irum Rahim Syeda Maria Ali Maria Aslam 《Journal of Geoscience and Environment Protection》 2018年第2期34-49,共16页
District Ghizer is a rugged mountainous territory which experiences several landslides each year. There are 16 major landslide areas and 53 villages that are at high risk to hazards. Keeping in view the severity of na... District Ghizer is a rugged mountainous territory which experiences several landslides each year. There are 16 major landslide areas and 53 villages that are at high risk to hazards. Keeping in view the severity of natural hazards, the present study was designed to generate landslide susceptibility map based on twelve causative factors viz., slope, aspect, elevation, drainage network, Stream Power Index (SPI), Topographic Wetness Index (TWI), lithological units, fault lines, rainfall, road network, land cover and soil texture. Soil texture was determined by particle size analysis and data for other factors were acquired from freely available sources. Analytical Hierarchy Process (AHP) was employed to identify major landslide causative factors in the district Ghizer. Further, a temporal assessment from 1999 till 2015 was generated to assess the impact of land cover change on landslides. It indicated that the barren soil/ exposed rocks and glaciers have reduced while the vegetation and water classes have shown increment. The total area that lies in moderate to very high landslide susceptible zones was 74.38%, while slope is the main landslide causative factor in the district Ghizer. Validation of the susceptibility map showed 88.1% of the landslides in the study area had occurred in the moderate to very high susceptible zones. 展开更多
关键词 landslide susceptibility mapping (lsm) Analytical HIERARCHY Process (AHP) GEOGRAPHIC Information System (GIS) Weighted Linear Combination (WLC) Remote Sensing (RS)
在线阅读 下载PDF
Geospatial susceptibility mapping of earthquake-induced landslides in Nuweiba area, Gulf of Aqaba, Egypt 被引量:1
14
作者 Sara ABUZIED Samia IBRAHIM +1 位作者 Mona KAISER Tarek Saleem 《Journal of Mountain Science》 SCIE CSCD 2016年第7期1286-1303,共18页
Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the... Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the earthquake-induced landslide susceptibility in Nuweiba area in Egypt with considerations of geological, geomorphological, topographical, and seismological factors. An integrated approach of remote sensing and GIS technologies were applied for that target. Several data sources including Terra SAR-X and SPOT 5 satellite imagery, topographic maps, field data, and other geospatial resources were used to model landslide susceptibility. These data were used specifically to produce important thematic layers contributing to landslide occurrences in the region. A rating scheme was developed to assign ranks for the thematic layers and weights for their classes based on their contribution in landslide susceptibility. The ranks and weights were defined based on the knowledge from field survey and authors experiences related to the study area. The landslide susceptibility map delineates the hazard zones to three relative classes of susceptibility: high, moderate, and low. Therefore, the current approach provides a way to assess landslide hazards and serves for geo-hazard planning and prediction in Nuweiba area. 展开更多
关键词 Geographic Information Systems(GIS) Remote Sensing(RS) landslides susceptibility mapping Weights Nuweiba area
在线阅读 下载PDF
Landslide susceptibility mapping of mountain roads based on machine learning combined model
15
作者 DOU Hong-qiang HUANG Si-yi +1 位作者 JIAN Wen-bin WANG Hao 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1232-1248,共17页
Landslide susceptibility mapping of mountain roads is frequently confronted by insufficient historical landslide sample data,multicollinearity of existing evaluation index factors,and inconsistency of evaluation facto... Landslide susceptibility mapping of mountain roads is frequently confronted by insufficient historical landslide sample data,multicollinearity of existing evaluation index factors,and inconsistency of evaluation factors due to regional environmental variations.Then,a single machine learning model can easily become overfitting,thus reducing the accuracy and robustness of the evaluation model.This paper proposes a combined machine-learning model to address the issues.The landslide susceptibility in mountain roads were mapped by using factor analysis to normalize and reduce the dimensionality of the initial condition factor and generating six new combination factors as evaluation indexes.The mountain roads in the Youxi County,Fujian Province,China were used for the landslide susceptibility mapping.Three most frequently used machine learning techniques,support vector machine(SVM),random forest(RF),and artificial neural network(ANN)models,were used to model the landslide susceptibility of the study area and validate the accuracy of this evaluation index system.The global minimum variance portfolio was utilized to construct a machine learning combined model.5-fold cross-validation,statistical indexes,and AUC(Area Under Curve)values were implemented to evaluate the predictive accuracy of the landslide susceptibility model.The mean AUC values for the SVM,RF,and ANN models in the training stage were 89.2%,88.5%,and 87.9%,respectively,and 78.0%,73.7%,and 76.7%,respectively,in the validating stage.In the training and validation stages,the mean AUC values of the combined model were 92.4% and 87.1%,respectively.The combined model provides greater prediction accuracy and model robustness than one single model. 展开更多
关键词 landslide susceptibility mapping Factor analysis MACHINELEARNING Combinedmodel Mountain roads
在线阅读 下载PDF
Application of Chebyshev theorem to data preparation in landslide susceptibility mapping studies:an example from Yenice(Karabük,Turkey)region
16
作者 Murat ERCANOGLU 《Journal of Mountain Science》 SCIE CSCD 2016年第11期1923-1940,共18页
Landslide database construction is one of the most crucial stages of the landslide susceptibility mapping studies. Although there are many techniques for preparing landslide database in the literature, representative ... Landslide database construction is one of the most crucial stages of the landslide susceptibility mapping studies. Although there are many techniques for preparing landslide database in the literature, representative data selection from huge data sets is a challenging, and, to some extent, a subjective task. Thus, in order to produce reliable landslide susceptibility maps, data-driven, objective and representative database construction is a very important stage for these maps. This study mainly focuses on a landslide database construction task. In this study, it was aimed at building a representative landslide database extraction approach by using Chebyshev theorem to evaluate landslide susceptibility in a landslide prone area in the Western Black Sea region of Turkey. The study area was divided into two different parts such as training (Basin 1) and testing areas (Basin 2). A total of nine parameters such as topographical elevation, slope, aspect, planar and profile curvatures, stream power index, distance to drainage, normalized difference vegetation index and topographical wetness index were used in the study. Next, frequency distributions of the considered parameters in both landslide and nonlandslide areas were extracted using different sampling strategies, and a total of nine different landslide databases were obtained. Of these, eight databases were gathered by the methodology proposed by this study based on different standard deviations and algebraic multiplication of raster parameter maps. To evaluate landslide susceptibility, Artificial Neural Network method was used in the study area considering the different landslide and nonlandslide data. Finally, to assess the performances of the so-produced landslide susceptibility maps based on nine data sets, Area Under Curve (AUC) approach was implemented both in Basin 1 and Basin 2. The best performances (the greatest AUC values) were gathered by the landslide susceptibility map produced by two standard deviation database extracted by the Chebyshev theorem, as 0.873 and 0.761, respectively. Results revealed that the methodology proposed by this study is a powerful and objective approach in landslide susceptibility mapping. 展开更多
关键词 Artificial neural network Chebyshev theorem landslide landslide database landslides susceptibility mapping
在线阅读 下载PDF
Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India 被引量:10
17
作者 Kanu Mandal Sunil Saha Sujit Mandal 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期264-280,共17页
Landslide is considered as one of the most severe threats to human life and property in the hilly areas of the world.The number of landslides and the level of damage across the globe has been increasing over time.Ther... Landslide is considered as one of the most severe threats to human life and property in the hilly areas of the world.The number of landslides and the level of damage across the globe has been increasing over time.Therefore,landslide management is essential to maintain the natural and socio-economic dynamics of the hilly region.Rorachu river basin is one of the most landslide-prone areas of the Sikkim selected for the present study.The prime goal of the study is to prepare landslide susceptibility maps(LSMs)using computer-based advanced machine learning techniques and compare the performance of the models.To properly understand the existing spatial relation with the landslide,twenty factors,including triggering and causative factors,were selected.A deep learning algorithm viz.convolutional neural network model(CNN)and three popular machine learning techniques,i.e.,random forest model(RF),artificial neural network model(ANN),and bagging model,were employed to prepare the LSMs.Two separate datasets including training and validation were designed by randomly taken landslide and nonlandslide points.A ratio of 70:30 was considered for the selection of both training and validation points.Multicollinearity was assessed by tolerance and variance inflation factor,and the role of individual conditioning factors was estimated using information gain ratio.The result reveals that there is no severe multicollinearity among the landslide conditioning factors,and the triggering factor rainfall appeared as the leading cause of the landslide.Based on the final prediction values of each model,LSM was constructed and successfully portioned into five distinct classes,like very low,low,moderate,high,and very high susceptibility.The susceptibility class-wise distribution of landslides shows that more than 90%of the landslide area falls under higher landslide susceptibility grades.The precision of models was examined using the area under the curve(AUC)of the receiver operating characteristics(ROC)curve and statistical methods like root mean square error(RMSE)and mean absolute error(MAE).In both datasets(training and validation),the CNN model achieved the maximum AUC value of 0.903 and 0.939,respectively.The lowest value of RMSE and MAE also reveals the better performance of the CNN model.So,it can be concluded that all the models have performed well,but the CNN model has outperformed the other models in terms of precision. 展开更多
关键词 Machine learning techniques Information gain ratio(IGR) landslide susceptibility map(lsm) Convolutional neural network(CNN) Receiver operating characteristics(ROC)
在线阅读 下载PDF
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County,Three Gorges Reservoir, China 被引量:10
18
作者 Ting Xiao Kunlong Yin +1 位作者 Tianlu Yao Shuhao Liu 《Acta Geochimica》 EI CAS CSCD 2019年第5期654-669,共16页
Landslide susceptibility mapping is vital for landslide risk management and urban planning.In this study,we used three statistical models[frequency ratio,certainty factor and index of entropy(IOE)]and a machine learni... Landslide susceptibility mapping is vital for landslide risk management and urban planning.In this study,we used three statistical models[frequency ratio,certainty factor and index of entropy(IOE)]and a machine learning model[random forest(RF)]for landslide susceptibility mapping in Wanzhou County,China.First,a landslide inventory map was prepared using earlier geotechnical investigation reports,aerial images,and field surveys.Then,the redundant factors were excluded from the initial fourteen landslide causal factors via factor correlation analysis.To determine the most effective causal factors,landslide susceptibility evaluations were performed based on four cases with different combinations of factors("cases").In the analysis,465(70%)landslide locations were randomly selected for model training,and 200(30%)landslide locations were selected for verification.The results showed that case 3 produced the best performance for the statistical models and that case 2 produced the best performance for the RF model.Finally,the receiver operating characteristic(ROC)curve was used to verify the accuracy of each model's results for its respective optimal case.The ROC curve analysis showed that the machine learning model performed better than the other three models,and among the three statistical models,the IOE model with weight coefficients was superior. 展开更多
关键词 landslide susceptibility mapping STATISTICAL MODEL Machine learning MODEL Four cases
在线阅读 下载PDF
Uncertainty pattern in landslide susceptibility prediction modelling:Effects of different landslide boundaries and spatial shape expressions 被引量:9
19
作者 Faming Huang Jun Yan +4 位作者 Xuanmei Fan Chi Yao Jinsong Huang Wei Chen Haoyuan Hong 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期62-77,共16页
In some studies on landslide susceptibility mapping(LSM),landslide boundary and spatial shape characteristics have been expressed in the form of points or circles in the landslide inventory instead of the accurate pol... In some studies on landslide susceptibility mapping(LSM),landslide boundary and spatial shape characteristics have been expressed in the form of points or circles in the landslide inventory instead of the accurate polygon form.Different expressions of landslide boundaries and spatial shapes may lead to substantial differences in the distribution of predicted landslide susceptibility indexes(LSIs);moreover,the presence of irregular landslide boundaries and spatial shapes introduces uncertainties into the LSM.To address this issue by accurately drawing polygonal boundaries based on LSM,the uncertainty patterns of LSM modelling under two different landslide boundaries and spatial shapes,such as landslide points and circles,are compared.Within the research area of Ruijin City in China,a total of 370 landslides with accurate boundary information are obtained,and 10 environmental factors,such as slope and lithology,are selected.Then,correlation analyses between the landslide boundary shapes and selected environmental factors are performed via the frequency ratio(FR)method.Next,a support vector machine(SVM)and random forest(RF)based on landslide points,circles and accurate landslide polygons are constructed as point-,circle-and polygon-based SVM and RF models,respectively,to address LSM.Finally,the prediction capabilities of the above models are compared by computing their statistical accuracy using receiver operating characteristic analysis,and the uncertainties of the predicted LSIs under the above models are discussed.The results show that using polygonal surfaces with a higher reliability and accuracy to express the landslide boundary and spatial shape can provide a markedly improved LSM accuracy,compared to those based on the points and circles.Moreover,a higher degree of uncertainty of LSM modelling is present in the expression of points because there are too few grid units acting as model input variables.Additionally,the expression of the landslide boundary as circles introduces errors in measurement and is not as accurate as the polygonal boundary in most LSM modelling cases.In addition,the results under different conditions show that the polygon-based models have a higher LSM accuracy,with lower mean values and larger standard deviations compared with the point-and circle-based models.Finally,the overall LSM accuracy of the RF is superior to that of the SVM,and similar patterns of landslide boundary and spatial shape affecting the LSM modelling are reflected in the SVM and RF models. 展开更多
关键词 landslide boundary landslide susceptibility mapping Machine learning Uncertainty analysis Frequency ratio
在线阅读 下载PDF
Landslide inventory and susceptibility assessment using multiple statistical approaches along the Karakoram highway,northern Pakistan 被引量:7
20
作者 Mian Luqman HUSSAIN Muhammad SHAFIQUE +2 位作者 Alam Sher BACHA CHEN Xiao-qing CHEN Hua-yong 《Journal of Mountain Science》 SCIE CSCD 2021年第3期583-598,共16页
China-Pakistan Economic Corridor(CPEC)is a framework of regional connectivity,which will not only benefit China and Pakistan but will have positive impact on Iran,Afghanistan,India,Central Asian Republic,and the regio... China-Pakistan Economic Corridor(CPEC)is a framework of regional connectivity,which will not only benefit China and Pakistan but will have positive impact on Iran,Afghanistan,India,Central Asian Republic,and the region.The surrounding area in CPEC is prone to frequent disruption by geological hazards mainly landslides in northern Pakistan.Comprehensive landslide inventory and susceptibility assessment are rarely available to utilize for landslide mitigation strategies.This study aims to utilize the high-resolution satellite images to develop a comprehensive landslide inventory and subsequently develop landslide susceptibility maps using multiple techniques.The very high-resolution(VHR)satellite images are utilized to develop a landslide inventory using the visual image classification techniques,historic records and field observations.A total of 1632 landslides are mapped in the area.Four statistical models i.e.,frequency ratio,artificial neural network,weights of evidence and logistic regression were used for landslide susceptibility modeling by comparing the landslide inventory with the topographic parameters,geological features,drainage and road network.The developed landslides susceptibility maps were verified using the area under curve(AUC)method.The prediction power of the model was assessed by the prediction rate curve.The success rate curves show 93%,92.8%,92.7%and 87.4%accuracy of susceptibility maps for frequency ratio,artificial neural network,weights of evidence and logistic regression,respectively.The developed landslide inventory and susceptibility maps can be used for land use planning and landslide mitigation strategies. 展开更多
关键词 landslideS Inventory map susceptibility assessment Northern Pakistan CPEC
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部