研究了离散时间多智能体系统的间歇输出一致性问题。首先,基于离散时间多智能体系统建立模型,提出了对通信时间进行控制的间歇输出一致性控制协议;再通过构造误差系统和Lyapunov候选函数,分阶段得到实现输出一致性的充分条件;然后利用...研究了离散时间多智能体系统的间歇输出一致性问题。首先,基于离散时间多智能体系统建立模型,提出了对通信时间进行控制的间歇输出一致性控制协议;再通过构造误差系统和Lyapunov候选函数,分阶段得到实现输出一致性的充分条件;然后利用输出调节方程,证明了间歇通信下多智能体系统的输出一致性;最后,使用具体的数值进行仿真,验证所得结果的有效性。The intermittent output consensus problem of discrete-time multi-agent systems is studied. Firstly, a model based on discrete-time multi-agent systems is established, and an intermittent output consensus control protocol is proposed to control communication time. Then, by constructing an error system and Lyapunov candidate function, sufficient conditions for achieving output consensus are obtained in stages. After that, the output consensus of multi-agent systems under intermittent communication was proved by using the output adjustment equation. Finally, a specific numerical simulation was conducted to validate the validity of the results obtained.展开更多
量子漫步算法能模拟游走粒子在图上的量子相干演化,粒子的运动状态由量子态的相干叠加而成.与经典随机游走算法相比,量子漫步算法具有寻找目标节点时间少和源节点扩散至其他节点时间少的优点.提出一种基于离散时间量子漫步的链路预测(li...量子漫步算法能模拟游走粒子在图上的量子相干演化,粒子的运动状态由量子态的相干叠加而成.与经典随机游走算法相比,量子漫步算法具有寻找目标节点时间少和源节点扩散至其他节点时间少的优点.提出一种基于离散时间量子漫步的链路预测(link predictionbased on discrete time quantum walk,简称LP-DTQW)算法.研究结果表明:相对于其他7种算法,LP-DTQW算法有更高的预测精度;LP-DTQW算法的时间复杂度远低于经典RWR(random walk with restart)链路预测算法的时间复杂度.因此,LP-DTQW算法具有更强的预测性能.展开更多
物理系统中波动、传播等现象通常用双曲型守恒律方程的数学模型来描述,特别是在流体力学领域尤为重要。针对此类方程,我们考虑了Lax-Wendroff型中心间断伽辽金方法。该方法首先采用Lax-Wendroff型时间离散方法,也就是通过泰勒级数展开...物理系统中波动、传播等现象通常用双曲型守恒律方程的数学模型来描述,特别是在流体力学领域尤为重要。针对此类方程,我们考虑了Lax-Wendroff型中心间断伽辽金方法。该方法首先采用Lax-Wendroff型时间离散方法,也就是通过泰勒级数展开处理时间导数,然后在空间上运用中心间断伽辽金方法,从而避免了传统的多步时间积分方法。最后我们对多个双曲型守恒律方程开展数值实验,验证所提出方法在计算效率和精度上的有效性。In physical systems, phenomena like wave fluctuation and propagation are often described using hyperbolic conservation law equations, which play a crucial role in fluid mechanics. To solve these equations, we employ the Lax-Wendroff central discontinuous Galerkin method. This approach begins with the Lax-Wendroff time discretization, where time derivatives are managed through a Taylor series expansion. It then incorporates the central discontinuous Galerkin method for spatial discretization and effectively eliminates the need for traditional multi-step time integration schemes. Finally, numerical experiments on various hyperbolic conservation law equations are constructed to validate the effectiveness of our method in terms of both computational efficiency and accuracy.展开更多
文摘研究了离散时间多智能体系统的间歇输出一致性问题。首先,基于离散时间多智能体系统建立模型,提出了对通信时间进行控制的间歇输出一致性控制协议;再通过构造误差系统和Lyapunov候选函数,分阶段得到实现输出一致性的充分条件;然后利用输出调节方程,证明了间歇通信下多智能体系统的输出一致性;最后,使用具体的数值进行仿真,验证所得结果的有效性。The intermittent output consensus problem of discrete-time multi-agent systems is studied. Firstly, a model based on discrete-time multi-agent systems is established, and an intermittent output consensus control protocol is proposed to control communication time. Then, by constructing an error system and Lyapunov candidate function, sufficient conditions for achieving output consensus are obtained in stages. After that, the output consensus of multi-agent systems under intermittent communication was proved by using the output adjustment equation. Finally, a specific numerical simulation was conducted to validate the validity of the results obtained.
文摘量子漫步算法能模拟游走粒子在图上的量子相干演化,粒子的运动状态由量子态的相干叠加而成.与经典随机游走算法相比,量子漫步算法具有寻找目标节点时间少和源节点扩散至其他节点时间少的优点.提出一种基于离散时间量子漫步的链路预测(link predictionbased on discrete time quantum walk,简称LP-DTQW)算法.研究结果表明:相对于其他7种算法,LP-DTQW算法有更高的预测精度;LP-DTQW算法的时间复杂度远低于经典RWR(random walk with restart)链路预测算法的时间复杂度.因此,LP-DTQW算法具有更强的预测性能.
文摘物理系统中波动、传播等现象通常用双曲型守恒律方程的数学模型来描述,特别是在流体力学领域尤为重要。针对此类方程,我们考虑了Lax-Wendroff型中心间断伽辽金方法。该方法首先采用Lax-Wendroff型时间离散方法,也就是通过泰勒级数展开处理时间导数,然后在空间上运用中心间断伽辽金方法,从而避免了传统的多步时间积分方法。最后我们对多个双曲型守恒律方程开展数值实验,验证所提出方法在计算效率和精度上的有效性。In physical systems, phenomena like wave fluctuation and propagation are often described using hyperbolic conservation law equations, which play a crucial role in fluid mechanics. To solve these equations, we employ the Lax-Wendroff central discontinuous Galerkin method. This approach begins with the Lax-Wendroff time discretization, where time derivatives are managed through a Taylor series expansion. It then incorporates the central discontinuous Galerkin method for spatial discretization and effectively eliminates the need for traditional multi-step time integration schemes. Finally, numerical experiments on various hyperbolic conservation law equations are constructed to validate the effectiveness of our method in terms of both computational efficiency and accuracy.