In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS ...In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS algorithm based on logarithmic function(PLFxLMS)is proposed,and the genetic algorithm are introduced to optimize the parameters of logarithmic variable step size FxLMS(LFxLMS),improved logarithmic variable step size Films(IFxLMS),and PLFxLMS algorithms.Bandlimited white noise is used as the input signal,FxLMS,LFxLMS,ILFxLMS,and PLFxLMS algorithms are used to conduct active noise control simulation,and the convergence speed and steady-state characteristic of four algorithms are comparatively analyzed.Compared with the other three algorithms,the PLFxLMS algorithm proposed in this paper has the fastest convergence speed,and small steady-state error.The PLFxLMS algorithm can effectively improve the convergence speed and steady-state error of the FxLMS algorithm that cannot be controlled at the same time,and achieve the optimal effect.展开更多
In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the roo...In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the root mean-square radius, and the magnetic dipole moment of the nucleus 6Li. We have computed the necessary two-particle orbital fractional parentage coefficients for nuclei with mass number A=6and number of quanta of excitations N=10, which are not available in the literature. In addition, we have used our previous findings on the nucleon-nucleon interaction with Gaussian radial dependencies, which fits the deuteron characteristics as well as the triton binding energy, root-mean square radius and magnetic dipole moment. The numerical results obtained in this work are in excellent agreement with the corresponding experimental data and the previously published theoretical results in the literature.展开更多
In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equat...In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equation.展开更多
为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean squa...为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,cha...Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.展开更多
短波通信原理简单,已广泛应用于大型无线通信系统。但在实际应用中,很多因素会影响短波通信,造成数据干扰,因此应采取有效的控制措施。基于此,分析短波通信的基本内容与主要特点,并在剖析短波通信干扰的基础上,分别从短波通信信号特征...短波通信原理简单,已广泛应用于大型无线通信系统。但在实际应用中,很多因素会影响短波通信,造成数据干扰,因此应采取有效的控制措施。基于此,分析短波通信的基本内容与主要特点,并在剖析短波通信干扰的基础上,分别从短波通信信号特征提取、干扰数据识别、数据干扰控制及实验测试4个方面,探讨基于最小均方(Least Mean Square,LMS)的短波通信数据干扰控制技术。展开更多
为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控...为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控制算法,并在工程应用中常见的主动撑杆隔振平台上对该混合算法的振动控制性能进行仿真分析和试验验证。变载荷激励及控制通道变化仿真和试验结果均表明,不同激励下各个阶段的加速度响应衰减均超过80%,且与传统的FxLMS算法相比,所提出的混合控制算法具有更快的收敛速度和更强的鲁棒性。展开更多
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for inp...Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for input space. It can serve as a powerful tool to perform complex computing for network service and application. With the purpose of compressing the input to further improve learning performance, this article proposes a novel QKLMS with entropy-guided learning, called EQ-KLMS. Under the consecutive square entropy learning framework, the basic idea of entropy-guided learning technique is to measure the uncertainty of the input vectors used for QKLMS, and delete those data with larger uncertainty, which are insignificant or easy to cause learning errors. Then, the dataset is compressed. Consequently, by using square entropy, the learning performance of proposed EQ-KLMS is improved with high precision and low computational cost. The proposed EQ-KLMS is validated using a weather-related dataset, and the results demonstrate the desirable performance of our scheme.展开更多
A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adap...A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts.展开更多
文摘In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS algorithm based on logarithmic function(PLFxLMS)is proposed,and the genetic algorithm are introduced to optimize the parameters of logarithmic variable step size FxLMS(LFxLMS),improved logarithmic variable step size Films(IFxLMS),and PLFxLMS algorithms.Bandlimited white noise is used as the input signal,FxLMS,LFxLMS,ILFxLMS,and PLFxLMS algorithms are used to conduct active noise control simulation,and the convergence speed and steady-state characteristic of four algorithms are comparatively analyzed.Compared with the other three algorithms,the PLFxLMS algorithm proposed in this paper has the fastest convergence speed,and small steady-state error.The PLFxLMS algorithm can effectively improve the convergence speed and steady-state error of the FxLMS algorithm that cannot be controlled at the same time,and achieve the optimal effect.
文摘In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the root mean-square radius, and the magnetic dipole moment of the nucleus 6Li. We have computed the necessary two-particle orbital fractional parentage coefficients for nuclei with mass number A=6and number of quanta of excitations N=10, which are not available in the literature. In addition, we have used our previous findings on the nucleon-nucleon interaction with Gaussian radial dependencies, which fits the deuteron characteristics as well as the triton binding energy, root-mean square radius and magnetic dipole moment. The numerical results obtained in this work are in excellent agreement with the corresponding experimental data and the previously published theoretical results in the literature.
文摘In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equation.
文摘为改善滤波-x最小均方(filtered-x least mean square,FxLMS)算法在噪声主动控制时无法兼顾收敛速度和稳态误差的问题,提出了基于sigmoid-sinh分段函数的FxLMS(SSFxLMS)算法,并引入蚁狮算法对SFxLMS(sigmoid filtered-x least mean square)、ShFxLMS(sinh filtered-x least mean square)、SSFxLMS算法的参数进行优化。分别采用高斯白噪声和实测簇绒地毯织机噪声为输入信号,采用FxLMS、SFxLMS、ShFxLMS、SSFxLMS算法进行噪声主动控制仿真,对比分析这4种算法的性能。结果表明:与其他3种算法相比,采用SSFxLMS算法对高斯白噪声和簇绒地毯织机噪声进行控制时,误差信号的平均绝对值更小,平均降噪量与收敛速度也有大幅度提升。由此可知,SSFxLMS算法有效改善了FxLMS算法无法兼顾收敛速度和稳态误差的问题,研究结果为噪声主动控制算法设计提供了一定的参考。
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金the National Natural Science Foundation of China(No.61601296,61701295)the Science and Technology Innovation Action Plan Project of Shanghai Science and Technology Commission(No.20511103500)the Talent Program of Shanghai University of Engineering Science(No.2018RC43).
文摘Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.
文摘短波通信原理简单,已广泛应用于大型无线通信系统。但在实际应用中,很多因素会影响短波通信,造成数据干扰,因此应采取有效的控制措施。基于此,分析短波通信的基本内容与主要特点,并在剖析短波通信干扰的基础上,分别从短波通信信号特征提取、干扰数据识别、数据干扰控制及实验测试4个方面,探讨基于最小均方(Least Mean Square,LMS)的短波通信数据干扰控制技术。
文摘为解决传统滤波最小均方差(filtered-x least mean square,FxLMS)算法在收敛速度和稳定性之间存在的矛盾,以及次级通道模型不确定性对控制收敛性能的影响,将反馈FxLMS算法和混合灵敏度鲁棒控制器相结合,提出了一种反馈FxLMS-鲁棒混合控制算法,并在工程应用中常见的主动撑杆隔振平台上对该混合算法的振动控制性能进行仿真分析和试验验证。变载荷激励及控制通道变化仿真和试验结果均表明,不同激励下各个阶段的加速度响应衰减均超过80%,且与传统的FxLMS算法相比,所提出的混合控制算法具有更快的收敛速度和更强的鲁棒性。
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金supported by the National Key Technologies R&D Program of China under Grant No. 2015BAK38B01the National Natural Science Foundation of China under Grant Nos. 61174103 and 61603032+4 种基金the National Key Research and Development Program of China under Grant Nos. 2016YFB0700502, 2016YFB1001404, and 2017YFB0702300the China Postdoctoral Science Foundation under Grant No. 2016M590048the Fundamental Research Funds for the Central Universities under Grant No. 06500025the University of Science and Technology Beijing - Taipei University of Technology Joint Research Program under Grant No. TW201610the Foundation from the Taipei University of Technology of Taiwan under Grant No. NTUT-USTB-105-4
文摘Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for input space. It can serve as a powerful tool to perform complex computing for network service and application. With the purpose of compressing the input to further improve learning performance, this article proposes a novel QKLMS with entropy-guided learning, called EQ-KLMS. Under the consecutive square entropy learning framework, the basic idea of entropy-guided learning technique is to measure the uncertainty of the input vectors used for QKLMS, and delete those data with larger uncertainty, which are insignificant or easy to cause learning errors. Then, the dataset is compressed. Consequently, by using square entropy, the learning performance of proposed EQ-KLMS is improved with high precision and low computational cost. The proposed EQ-KLMS is validated using a weather-related dataset, and the results demonstrate the desirable performance of our scheme.
基金Project supported by the Higher Education Commission of Pakistan
文摘A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts.