期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
Variable Selection via Biased Estimators in the Linear Regression Model
1
作者 Manickavasagar Kayanan Pushpakanthie Wijekoon 《Open Journal of Statistics》 2020年第1期113-126,共14页
Least Absolute Shrinkage and Selection Operator (LASSO) is used for variable selection as well as for handling the multicollinearity problem simultaneously in the linear regression model. LASSO produces estimates havi... Least Absolute Shrinkage and Selection Operator (LASSO) is used for variable selection as well as for handling the multicollinearity problem simultaneously in the linear regression model. LASSO produces estimates having high variance if the number of predictors is higher than the number of observations and if high multicollinearity exists among the predictor variables. To handle this problem, Elastic Net (ENet) estimator was introduced by combining LASSO and Ridge estimator (RE). The solutions of LASSO and ENet have been obtained using Least Angle Regression (LARS) and LARS-EN algorithms, respectively. In this article, we proposed an alternative algorithm to overcome the issues in LASSO that can be combined LASSO with other exiting biased estimators namely Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator. Further, we examine the performance of the proposed algorithm using a Monte-Carlo simulation study and real-world examples. The results showed that the LARS-rk and LARS-rd algorithms,?which are combined LASSO with r-k class estimator and r-d class estimator,?outperformed other algorithms under the moderated and severe multicollinearity. 展开更多
关键词 Variable selection least absolute shrinkage and selection operator (LASSO) least Angle regression (LARS) Elastic Net (ENet) Biased ESTIMATORS
在线阅读 下载PDF
A prognostic four-gene signature and a therapeutic strategy for hepatocellular carcinoma:Construction and analysis of a circRNA-mediated competing endogenous RNA network
2
作者 Hai-Yan Zhang Jia-Jie Zhu +3 位作者 Zong-Ming Liu Yu-Xuan Zhang Jia-Jia Chen Ke-Da Chen 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第3期272-287,共16页
Background:Hepatocellular carcinoma(HCC)has a poor long-term prognosis.The competition of circular RNAs(circRNAs)with endogenous RNA is a novel tool for predicting HCC prognosis.Based on the alterations of circRNA reg... Background:Hepatocellular carcinoma(HCC)has a poor long-term prognosis.The competition of circular RNAs(circRNAs)with endogenous RNA is a novel tool for predicting HCC prognosis.Based on the alterations of circRNA regulatory networks,the analysis of gene modules related to HCC is feasible.Methods:Multiple expression datasets and RNA element targeting prediction tools were used to construct a circRNA-microRNA-mRNA network in HCC.Gene function,pathway,and protein interaction analyses were performed for the differentially expressed genes(DEGs)in this regulatory network.In the proteinprotein interaction network,hub genes were identified and subjected to regression analysis,producing an optimized four-gene signature for prognostic risk stratification in HCC patients.Anti-HCC drugs were excavated by assessing the DEGs between the low-and high-risk groups.A circRNA-microRNA-hub gene subnetwork was constructed,in which three hallmark genes,KIF4A,CCNA2,and PBK,were subjected to functional enrichment analysis.Results:A four-gene signature(KIF4A,CCNA2,PBK,and ZWINT)that effectively estimated the overall survival and aided in prognostic risk assessment in the The Cancer Genome Atlas(TCGA)cohort and International Cancer Genome Consortium(ICGC)cohort was developed.CDK inhibitors,PI3K inhibitors,HDAC inhibitors,and EGFR inhibitors were predicted as four potential mechanisms of drug action(MOA)in high-risk HCC patients.Subsequent analysis has revealed that PBK,CCNA2,and KIF4A play a crucial role in regulating the tumor microenvironment by promoting immune cell invasion,regulating microsatellite instability(MSI),and exerting an impact on HCC progression.Conclusions:The present study highlights the role of the circRNA-related regulatory network,identifies a four-gene prognostic signature and biomarkers,and further identifies novel therapy for HCC. 展开更多
关键词 Hepatocellular carcinoma circRNA-related ceRNA network Biomarker least absolute shrinkage and selection operator BIOINFORMATICS
在线阅读 下载PDF
纤维肌痛综合征生物标记物的筛选及免疫细胞浸润分析
3
作者 刘雅妮 杨静欢 +5 位作者 陆慧慧 易玉芳 李智翔 欧阳福 吴璟莉 魏兵 《中国组织工程研究》 CAS 北大核心 2025年第5期1091-1100,共10页
背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法... 背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法筛选纤维肌痛综合征潜在的诊断相关标志基因,并分析其免疫细胞浸润特征。方法:对来自基因表达综合数据库(GEO)的纤维肌痛综合征数据集转录谱进行差异分析和WGCNA分析,整合筛选出差异共表达基因,进一步采用机器学习套索回归(LASSO)算法、支持向量机递归特征消除(SVM-RFE)机器学习算法来识别核心生物标志物,并绘制受试者工作特征(ROC)曲线以评估诊断价值。最后,采用单样本基因集富集分析(ssGSEA)和基因集富集分析(GSEA)评估纤维肌痛综合征的免疫细胞浸润情况及通路富集。结果与结论:①对GSE67311数据集按照log2|(FC)|>0,P<0.05的条件进行差异分析后获得8个下调的差异表达基因;进行WGCNA分析后获得正相关性最高(r=0.22,P=0.04)的模块(MEdarkviolet)内含基因497个,负相关性最高(r=-0.41,P=6×10-5)的模块(MEsalmon2)内含基因19个;将差异表达基因与WGCNA的2个高相关性模块基因取交集,获得7个基因。②对上述7个基因进行LASSO回归算法筛选出4个基因,进行SVM-RFE机器学习算法筛选出5个基因,两者取交集后确定了3个核心基因,分别为重组1号染色体开放阅读框150蛋白(germinal center associated signaling and motility like,GCSAML)、整合素β8(Integrin beta-8,ITGB8)和羧肽酶A3(carboxypeptidase A3,CPA3);绘制3个核心基因的ROC曲线下面积分别为0.744,0.739,0.734,提示均具有很好的诊断价值,可作为纤维肌痛综合征的生物标志物。③免疫浸润分析结果显示,与对照组相比纤维肌痛综合征患者记忆B细胞、CD56 bright NK细胞和肥大细胞显著下调(P<0.05),且与上述3个生物标志物显著正相关(P<0.05)。④富集分析结果提示,纤维肌痛综合征的富集途径包括9条,主要与嗅觉传导、神经活性配体-受体相互作用及感染等通路密切相关。⑤上述结果显示,纤维肌痛综合征的发生发展与多基因参与、免疫调节异常及多个通路失调有关,但这些基因与免疫细胞之间的相互作用,以及它们与各通路之间的关系尚需进一步研究。 展开更多
关键词 纤维肌痛综合征 生物信息学 机器学习 免疫浸润 加权基因共表达网络分析 套索回归 支持向量机递归特征消除算法 单样本基因集富集分析 基因集富集分析
在线阅读 下载PDF
基于随机森林模型的中青年乳腺癌患者未成年子女养育忧虑及其影响因素
4
作者 宋宜芬 孙香莲 +5 位作者 刘晨 张金蕾 尹晓晓 张雅晴 贾维慧 尹崇高 《现代临床护理》 2025年第2期1-9,共9页
目的基于随机森林模型探讨中青年乳腺癌患者未成年子女养育忧虑现状及其影响因素,为临床干预提供依据。方法采用便利抽样法,选择2023年4月至12月在本市某三级甲等综合医院乳腺外科接受诊疗的275例乳腺癌患者为研究对象。采用自行设计的... 目的基于随机森林模型探讨中青年乳腺癌患者未成年子女养育忧虑现状及其影响因素,为临床干预提供依据。方法采用便利抽样法,选择2023年4月至12月在本市某三级甲等综合医院乳腺外科接受诊疗的275例乳腺癌患者为研究对象。采用自行设计的一般资料问卷、中文版养育忧虑问卷(parenting concerns questionnaire,PCQ)、领悟社会支持量表(perceived social support scale,PSSS)、癌症复发担忧量表(concern about recurrence scale,CARS)、简易疾病感知量表(brief illness perception questionnaire,BIPQ)进行调查。基于随机森林模型和最小绝对收缩和选择算法(least absolute shrinkage and selection operator,LASSO)对变量进行重要性排序和变量筛选,将筛选后的变量纳入多元线性回归分析。结果260例患者完成研究。中青年乳腺癌患者养育忧虑得分为(51.1±6.4)分。将随机森林及LASSO回归确定的变量,纳入多元线性回归分析结果显示(并按影响因素重次要排序),疾病感知越高、领悟社会支持越低、癌症复发担忧越大、肿瘤分期Ⅳ期、离异/丧偶、未成年子女个数越多的中青年乳腺癌患者养育的忧虑越严重(均P<0.05),解释总变异的57.0%。结论中青年乳腺癌患者养育忧虑处于中等偏高水平,受多种因素影响,医护人员应针对性制订措施给予干预,以便降低患者养育忧虑水平。 展开更多
关键词 乳腺癌 养育忧虑 社会支持 癌症复发担忧 疾病感知 随机森林模型 最小绝对收缩和选择算法回归 横断面研究
在线阅读 下载PDF
套索回归在配电网谐波源定位的应用
5
作者 程宏波 万紫彤 +2 位作者 李宗伟 蔡木良 辛建波 《电力系统及其自动化学报》 北大核心 2025年第3期59-65,共7页
为实现配电网谐波源定位欠定方程组的准确求解,提出用套索回归实现配电网谐波源定位。套索回归通过引入惩罚项,对无谐波源的节点电流进行压缩,以降低方程组的欠定程度。以残差平方和最小为目标对节点的谐波电流进行估计,得到配电网谐波... 为实现配电网谐波源定位欠定方程组的准确求解,提出用套索回归实现配电网谐波源定位。套索回归通过引入惩罚项,对无谐波源的节点电流进行压缩,以降低方程组的欠定程度。以残差平方和最小为目标对节点的谐波电流进行估计,得到配电网谐波源定位稀疏方程的最优解,根据求解的谐波电流判断谐波源的位置,并利用IEEE33节点系统进行仿真验证。结果表明,本文方法可准确确定谐波源位置,与最小二乘法和岭回归及正交匹配相比,本文方法求解结果的误差更小、精度更高,当量测点数量越少时,本文方法的优势越明显。因此,本文方法估计结果准确,抗干扰能力强。 展开更多
关键词 谐波源 欠定方程 套索回归 谐波状态估计 惩罚系数
在线阅读 下载PDF
强噪声下基于加窗LASSO的声源定位方法
6
作者 滕繁 蒋三新 《计算机应用与软件》 北大核心 2025年第3期119-126,共8页
传统声源定位方法往往容易受到低信噪比等不利声学条件的影响,难以同时实现定位的准确性与实时性,为此提出一种基于加窗最小绝对收缩选择算子(Least Absolute Shrinkage and Selection Operator,LASSO)的定位方法。采用加窗LASSO对音频... 传统声源定位方法往往容易受到低信噪比等不利声学条件的影响,难以同时实现定位的准确性与实时性,为此提出一种基于加窗最小绝对收缩选择算子(Least Absolute Shrinkage and Selection Operator,LASSO)的定位方法。采用加窗LASSO对音频信号进行稀疏分解来提取所包含的高能暂态与稳态成分,利用两者进行SRP-PHAT计算,实现目标声源的空间定位。实验结果表明,该方法可以有效抑制环境噪声,将定位误差保持在±10°左右;减小计算复杂度,将每帧的定位时间降低到1 s以下。 展开更多
关键词 结构稀疏分解 相位变换加权的可控功率响应 最小绝对收缩选择算子 强噪声
在线阅读 下载PDF
基于凋亡的胰腺转录组学分析高原环境下创伤性胰腺炎的发病机制
7
作者 吉华 辛梅 +5 位作者 唐娅萍 唐政 蒋可馨 赵怡文 冯佳杰 戴睿武 《创伤外科杂志》 2025年第2期132-140,共9页
目的通过对高原环境下创伤性胰腺炎(HTP)大鼠的胰腺组织进行高通量测序分析,初步探究HTP发生时与凋亡相关的关键差异表达基因(DEGs)及相关的病理信号通路。方法将18只SD大鼠分为3个小组:对照组(control,C组)、高原组(high altitude,H组... 目的通过对高原环境下创伤性胰腺炎(HTP)大鼠的胰腺组织进行高通量测序分析,初步探究HTP发生时与凋亡相关的关键差异表达基因(DEGs)及相关的病理信号通路。方法将18只SD大鼠分为3个小组:对照组(control,C组)、高原组(high altitude,H组,将大鼠放入高原仓中饲养8周)以及HTP组(将大鼠放入高原仓中饲养8周后用小动物多功能冲击仪对大鼠胰腺进行一次冲击)。建模24h后分别取3组大鼠的胰腺组织进行高通量测序,分析C组与H组、H组与HTP组之间的差异表达基因,结合凋亡相关基因鉴定出交集基因。对交集基因进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析。使用最小绝对收缩和选择算子(LASSO)回归分析筛选出HTP发生过程中的关键基因。最后取H组和HTP组大鼠的胰腺组织进行定量实时聚合酶链式反应(qPCR)分析,验证测序数据分析的结果。结果通过对C组与H组进行差异表达分析,共获得2029个DEGs;通过对H组与HTP组进行差异表达分析,共获得个1569个DEGs;将两部分DEGs与凋亡相关基因(ARGs)取交集发现有29个交集基因。这些交集基因的KEGG主要富集在青春晚期糖尿病、Ⅱ型糖尿病、胰岛素分泌等与糖尿病及胰岛素分泌等相关的胰腺内分泌代谢通路上;而GO主要富集在细胞分泌的正调控,细胞对肽激素刺激的反应,胰岛素受体信号通路,肽类激素分泌的调节等生物学过程中。使用LASSO回归算法筛选出3个关键基因(Il33、Ybx1、Insrr);其中两个基因(Ybx1、Insrr)得到qPCR分析表达量变化趋势的验证。结论HTP发生的关键信号通路是青春晚期糖尿病、Ⅱ型糖尿病、胰岛素分泌等与糖尿病及胰岛素分泌等相关的胰腺内分泌代谢的信号通路;关键基因是Ybx1以及Insrr。 展开更多
关键词 创伤性胰腺炎 高原 最小绝对值收缩和选择算子 大鼠
在线阅读 下载PDF
基于LASSO回归的重型颅脑损伤患者并发CRKP感染列线图模型构建与评价
8
作者 沈翔 何兰兰 +4 位作者 杜雷涛 朱岗 董德胜 张夏兰 盛文国 《浙江医学》 2025年第3期257-262,I0004,共7页
目的构建并评价基于最小绝对值收缩和选择算子(LASSO)回归的重型颅脑损伤(sTBI)患者并发耐碳青霉烯类肺炎克雷伯菌(CRKP)感染的列线图模型。方法回顾性选取2019年6月至2023年12月湖州学院附属南太湖医院和2016年1月至2023年12月陆军第7... 目的构建并评价基于最小绝对值收缩和选择算子(LASSO)回归的重型颅脑损伤(sTBI)患者并发耐碳青霉烯类肺炎克雷伯菌(CRKP)感染的列线图模型。方法回顾性选取2019年6月至2023年12月湖州学院附属南太湖医院和2016年1月至2023年12月陆军第72集团军医院收治的159例s TBI并发肺炎克雷伯菌感染患者为研究对象,根据耐药情况,分为CRKP组40例和碳青霉烯类敏感肺炎克雷伯菌组119例。分析CRKP感染特点,采用LASSO回归筛选最优特征变量,采用多因素logistic回归分析sTBI并发CRKP感染的独立影响因素并构建列线图模型。绘制ROC曲线、校准曲线、决策曲线分别评价列线图模型的区分度、校准度、临床净获益。结果CRKP感染检出率为25.16%,分离标本以痰液、尿液为主,分别占80.85%、8.51%。基于LASSO回归共筛选出6个非零系数变量,分别为年龄、复数菌感染、创伤性脑梗死、格拉斯哥昏迷评分(GCS)、控制营养状况(CONUT)评分、入住重症监护病房(ICU)时间。多因素logistic回归分析显示,年龄、复数菌感染、创伤性脑梗死、GCS、CONUT评分、入住ICU时间均是sTBI并发CRKP感染的独立影响因素(均P<0.05)。基于上述影响因素构建列线图模型,结果显示该模型预测CRKP感染的AUC为0.906(95%CI:0.849~0.962)。校准曲线显示模型预测概率与实际概率一致性较好(P=0.673)。决策曲线显示CRKP发生风险阈值为0.05~0.89、0.92~0.94时,该模型具有较高临床净获益。结论本研究构建的列线图模型预测效能较好,可作为筛查sTBI患者并发CRKP感染的评估工具。 展开更多
关键词 重型颅脑损伤 耐碳青霉烯类肺炎克雷伯菌感染 最小绝对值收缩和选择算子回归 列线图模型
在线阅读 下载PDF
Study on Influence Factors of Pressure Injury Risk in the Elderly Inpatients with Kidney Disease Based on LASSO Regression 被引量:5
9
作者 Ling Liu Chunhua Wang +5 位作者 Lianghong Yin Jiayi Wang Hong Yang Yingxue Zhong Zhiwei Mou Yu Chen 《Open Journal of Preventive Medicine》 2020年第6期95-107,共13页
<strong>Objective</strong>: This paper aims to explore clinical status and related influence factors of pressure injury (PI) in the elderly inpatients with kidney disease, so as to provide reference for th... <strong>Objective</strong>: This paper aims to explore clinical status and related influence factors of pressure injury (PI) in the elderly inpatients with kidney disease, so as to provide reference for the prevention and treatment of PI in the elderly inpatients with kidney disease. <strong>Methods</strong>: Retrospective collection method is adopted to collect 158 clinical cases of the elderly inpatients with kidney disease aged ≥ 60 in the Nephrology Department, the First Affiliated Hospital of Jinan University from January 2017 to December 2019, and then least absolute shrinkage and selection Operator (LASSO) regression analysis is used to analyze 17 possible influence factors;finally Logistic regression model is established to analyze and screen influence factors of risk. <strong>Results</strong>: 1) Among 158 elderly inpatients with medium and high risk of PI, the incidence of PI is 20.25%;the most common stage of injury is stage I (42.5%);sacrococcygeal (60%) is the high-risk site of pressure injury. 2) LASSO regression analysis shows that history of present respiratory infection/respiratory failure (<em>β </em>= 1.2714. <em>P</em> < 0.05) and hospitalization time (<em>β</em> = 0.4177. <em>P </em>< 0.05) are independent factors influencing PI risk in the elderly inpatients with kidney disease. <strong>Concl</strong><strong>usio</strong><strong>n</strong>: The elderly patients with kidney disease and PI risk are the high incidence population of hospital acquired PI;for the elderly inpatients with kidney disease and having respiratory infection history or respiratory failure, prolonged hospitalization will significantly increase the risk of PI. Therefore, targeted preventive and control measures should be taken to reduce the incidence of PI. 展开更多
关键词 least absolute shrinkage and selection operator The Elderly Inpatients with Kidney Disease Pressure Injury Influence Factors NURSING
在线阅读 下载PDF
Discrimination of Acori Tatarinowii Rhizoma from two habitats based on GC-MS fingerprinting and LASSO-PLS-DA 被引量:4
10
作者 马莎莎 张冰洋 +3 位作者 陈练 章晓娟 任达兵 易伦朝 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1063-1075,共13页
This study is intended to explore the chemical differences of Acori Tatarinowii Rhizoma (ATR) samples collected from two habitats, Sichuan and Anhui provinces, China. Gas chromatography-mass spectrometry (GC-MS) w... This study is intended to explore the chemical differences of Acori Tatarinowii Rhizoma (ATR) samples collected from two habitats, Sichuan and Anhui provinces, China. Gas chromatography-mass spectrometry (GC-MS) was applied to establishing the quantitative chemical fingerprints of ATRs. A total of 104 volatile compounds were identified and quantified with the information of mass spectra and retention index (RI). Furthermore, least absolute shrinkage and selection operator (LASSO), a sparse regularization method, combined with subsampling was employed to improve the classification ability of partial least squares-discriminant analysis (PLS-DA). After variable selection by LASSO, three chemical markers,β-elemene, α-selinene and α-asarone, were identified for the discrimination of ATRs from two habitats, and the total classification correct rate was increased from 82.76% to 96.55%. The proposed LASSO-PLS-DA method can serve as an efficient strategy for screening marked chemical components and geo-herbalism research of traditional Chinese medicines. 展开更多
关键词 Acori Tatarinowii Rhizoma gas chromatography-mass spectrometry least absolute shrinkage and selection operator (LASSO) partial least squares-discriminant analysis
在线阅读 下载PDF
Development and validation of a three-long noncoding RNA signature for predicting prognosis of patients with gastric cancer 被引量:1
11
作者 Jun Zhang Hai-Yan Piao +3 位作者 Yue Wang Mei-Yue Lou Shuai Guo Yan Zhao 《World Journal of Gastroenterology》 SCIE CAS 2020年第44期6929-6944,共16页
BACKGROUND Gastric cancer(GC)is one of the most frequently diagnosed gastrointestinal cancers throughout the world.Novel prognostic biomarkers are required to predict the prognosis of GC.AIM To identify a multi-long n... BACKGROUND Gastric cancer(GC)is one of the most frequently diagnosed gastrointestinal cancers throughout the world.Novel prognostic biomarkers are required to predict the prognosis of GC.AIM To identify a multi-long noncoding RNA(lncRNA)prognostic model for GC.METHODS Transcriptome data and clinical data were downloaded from The Cancer Genome Atlas.COX and least absolute shrinkage and selection operator regression analyses were performed to screen for prognosis associated lncRNAs.Receiver operating characteristic curve and Kaplan-Meier survival analyses were applied to evaluate the effectiveness of the model.RESULTS The prediction model was established based on the expression of AC007991.4,AC079385.3,and AL109615.2 Based on the model,GC patients were divided into“high risk”and“low risk”groups to compare the differences in survival.The model was re-evaluated with the clinical data of our center.CONCLUSION The 3-lncRNA combination model is an independent prognostic factor for GC. 展开更多
关键词 Gastric cancer PROGNOSIS least absolute shrinkage and selection operator Survival analysis Long noncoding RNA
在线阅读 下载PDF
Analysis of Risk Factors of Fever among Inpatients in Rehabilitation Department Based on Lasso Regression Analysis
12
作者 Ling Liu Jiayi Wang +4 位作者 Yingxue Zhong Chunhua Wang Yu Chen Yitao Mao Zhiwei Mou 《Journal of Biosciences and Medicines》 2020年第5期122-131,共10页
Purpose: To explore the fever-related risk factors of inpatients in Rehabilitation Department, and to provide reference for patients with high risk of fever to take corresponding nursing measures. Methods: The study w... Purpose: To explore the fever-related risk factors of inpatients in Rehabilitation Department, and to provide reference for patients with high risk of fever to take corresponding nursing measures. Methods: The study was conducted on the Rehabilitation Department of The First Affiliated Hospital of Jinan University from July 2019 to December 2019. The fever group included 51 patients and the non-fever group included 49 patients without fever. The two groups of clinical data, comorbidities, related laboratory values, possible risk factors of fever were analyzed by case regression analysis, and the relevant risk factors were screened out by LASSO (least absolute shrinkage and selection operator) regression analysis. Results: According to the results of Lasso regression analysis, pressure sore or skin infection, history of hypertension, current history of respiratory tract infection, feeding patterns were the higher risk factors of fever in inpatients in Rehabilitation Department, while the first course of disease, main diagnosis, history of respiratory tract infection within half a year, kidney damage and hospitalization days were lower risk factors. Conclusion: This study is helpful to early identify the fever risk of inpatients in Rehabilitation Department, and provide reference basis for high-risk fever patients to take positive and effective nursing measures. 展开更多
关键词 Rehabilitation DEPARTMENT FEVER Risk Factors least absolute shrinkage and selection operator NURSING Care
在线阅读 下载PDF
Identification of an immune classifier for predicting the prognosis and therapeutic response in triple-negative breast cancer
13
作者 KUAILU LIN QIANYU GU XIXI LAI 《BIOCELL》 SCIE 2023年第12期2681-2696,共16页
Triple-negative breast cancer(TNBC)poses a significant challenge due to the lack of reliable prognostic gene signatures and an understanding of its immune behavior.Methods:We analyzed clinical information and mRNA exp... Triple-negative breast cancer(TNBC)poses a significant challenge due to the lack of reliable prognostic gene signatures and an understanding of its immune behavior.Methods:We analyzed clinical information and mRNA expression data from 162 TNBC patients in TCGA-BRCA and 320 patients in METABRIC-BRCA.Utilizing weighted gene coexpression network analysis,we pinpointed 34 TNBC immune genes linked to survival.The least absolute shrinkage and selection operator Cox regression method identified key TNBC immune candidates for prognosis prediction.We calculated chemotherapy sensitivity scores using the“pRRophetic”package in R software and assessed immunotherapy response using the Tumor Immune Dysfunction and Exclusion algorithm.Results:In this study,34 survival-related TNBC immune gene expression profiles were identified.A least absolute shrinkage and selection operator-Cox regression model was used and 15 candidates were prioritized,with a concomitant establishment of a robust risk immune classifier.The high-risk TNBC immune groups showed increased sensitivity to therapeutic agents like RO-3306,Tamoxifen,Sunitinib,JNK Inhibitor VIII,XMD11-85h,BX-912,and Tivozanib.An analysis of the Search Tool for Interaction of Chemicals database revealed the associations between the high-risk group and signaling pathways,such as those involving Rap1,Ras,and PI3K-Akt.The low-risk group showed a higher immunotherapy response rate,as observed through the tumor immune dysfunction and exclusion analysis in the TCGA-TNBC and METABRIC-TNBC cohorts.Conclusion:This study provides insights into the immune complexities of TNBC,paving the way for novel diagnostic approaches and precision treatment methods that exploit its immunological intricacies,thus offering hope for improved management and outcomes of this challenging disease. 展开更多
关键词 Triple-negative breast cancer Immune classifier least absolute shrinkage and selection operator PROGNOSIS Precision treatment
在线阅读 下载PDF
Integrated analysis of single-cell and bulk RNA-seq establishes a novel signature for prediction in gastric cancer
14
作者 Fei Wen Xin Guan +1 位作者 Hai-Xia Qu Xiang-Jun Jiang 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第7期1215-1226,共12页
BACKGROUND Single-cell sequencing technology provides the capability to analyze changes in specific cell types during the progression of disease.However,previous single-cell sequencing studies on gastric cancer(GC)hav... BACKGROUND Single-cell sequencing technology provides the capability to analyze changes in specific cell types during the progression of disease.However,previous single-cell sequencing studies on gastric cancer(GC)have largely focused on immune cells and stromal cells,and further elucidation is required regarding the alterations that occur in gastric epithelial cells during the development of GC.AIM To create a GC prediction model based on single-cell and bulk RNA sequencing(bulk RNA-seq)data.METHODS In this study,we conducted a comprehensive analysis by integrating three singlecell RNA sequencing(scRNA-seq)datasets and ten bulk RNA-seq datasets.Our analysis mainly focused on determining cell proportions and identifying differentially expressed genes(DEGs).Specifically,we performed differential expression analysis among epithelial cells in GC tissues and normal gastric tissues(NAGs)and utilized both single-cell and bulk RNA-seq data to establish a prediction model for GC.We further validated the accuracy of the GC prediction model in bulk RNA-seq data.We also used Kaplan–Meier plots to verify the correlation between genes in the prediction model and the prognosis of GC.RESULTS By analyzing scRNA-seq data from a total of 70707 cells from GC tissue,NAG,and chronic gastric tissue,10 cell types were identified,and DEGs in GC and normal epithelial cells were screened.After determining the DEGs in GC and normal gastric samples identified by bulk RNA-seq data,a GC predictive classifier was constructed using the Least absolute shrinkage and selection operator(LASSO)and random forest methods.The LASSO classifier showed good performance in both validation and model verification using The Cancer Genome Atlas and Genotype-Tissue Expression(GTEx)datasets[area under the curve(AUC)_min=0.988,AUC_1se=0.994],and the random forest model also achieved good results with the validation set(AUC=0.92).Genes TIMP1,PLOD3,CKS2,TYMP,TNFRSF10B,CPNE1,GDF15,BCAP31,and CLDN7 were identified to have high importance values in multiple GC predictive models,and KM-PLOTTER analysis showed their relevance to GC prognosis,suggesting their potential for use in GC diagnosis and treatment.CONCLUSION A predictive classifier was established based on the analysis of RNA-seq data,and the genes in it are expected to serve as auxiliary markers in the clinical diagnosis of GC. 展开更多
关键词 Gastric cancer Single-cell RNA sequencing Prediction model least absolute shrinkage and selection operator Random forest
在线阅读 下载PDF
Based on necroptosis identifying the immunological features and prognostic signatures of lung adenocarcinoma
15
作者 Peng Xia De-Gui Wang +5 位作者 Si-Wei Ouyang Rong Shen Zhao Guo Xu-Guang Yang Xiang-Wen Liu Kun Xie 《Medical Data Mining》 2022年第2期16-27,共12页
Background:Lung adenocarcinoma is one of the most common pathological types of lung malignant tumor with high morbidity and mortality.Long non-coding RNAs are gradually recognized to play crucial roles in tumor occurr... Background:Lung adenocarcinoma is one of the most common pathological types of lung malignant tumor with high morbidity and mortality.Long non-coding RNAs are gradually recognized to play crucial roles in tumor occurrence and development.Necroptosis is a newly established way for cell programmed death,undertaking essential roles in anti-tumor.Therefore,identifying necroptosis-related l ong non-coding RNAs and based on them to evaluate the signatures of l ung adenocarcinoma is essential for patients’survival prediction and therapy.Methods:We collected data from the public database and performed the least absolute shrinkage to construct a 13-lncRNAs prognostic model.Based on the Consensus Clustering,ESTIMATE,CIRERSORT,and weighted gene co-expression network analysis to identify the immune signatures.Results:This study identified a 13-lncRNAs prognostic model.The model’s prediction accuracy was evaluated by receiver operating characteristic and independent-prognosis analysis;besides,a Gene Expression Omnibus dataset was applied for external validation.Furthermore,we analyzed the immune features of subgroups in multiple dimensions.A consensus clustering analysis based on the 41 genes was implemented to separate lung adenocarcinoma patients into two subgroups.We compared the features of subgroups in multiple dimensions,including survival,immune microenvironment,immune cells infiltration and gene co-expression network analysis.Conclusion:W e established a prognosis necroptosis-related risk model to predict lung adenocarcinoma patients’prognosis and systematically understood the correlation between immune and necroptosis.This study can applicate in clinical to predict the prognosis of lung adenocarcinoma patients and provide new insight into lung adenocarcinoma immune therapy. 展开更多
关键词 lung adenocarcinoma l ong non-coding RNAs NECROPTOSIS the least absolute shrinkage and selection operator prognostic model
在线阅读 下载PDF
基于LASSO回归的宁夏回族自治区不同学段儿童青少年近视影响因素分析 被引量:2
16
作者 谢小莲 陈启 +4 位作者 李静 马娟 王飞 赵海萍 曹娟 《眼科新进展》 CAS 北大核心 2024年第7期549-553,共5页
目的分析宁夏回族自治区儿童青少年近视流行现状、影响因素及不同学段间的差异。方法采用分层整群随机抽样的方法,于2019年9月至12月,在宁夏回族自治区银川市、吴忠市、石嘴山市、固原市和中卫市,随机抽取8所小学、6所初中、6所高中、4... 目的分析宁夏回族自治区儿童青少年近视流行现状、影响因素及不同学段间的差异。方法采用分层整群随机抽样的方法,于2019年9月至12月,在宁夏回族自治区银川市、吴忠市、石嘴山市、固原市和中卫市,随机抽取8所小学、6所初中、6所高中、4所大学的学生为研究对象,小学每个年级抽取5个班级,初中至大学每个年级抽取4个班级,以抽取班级的全体学生作为研究对象,共抽取学生14211人,对其进行问卷调查、体格检查和视力测量。不同学段儿童近视的影响因素采用最小绝对收缩和选择算子(LASSO)联合Logistic回归进行分析,选择贝叶斯信息准则(Bayesian information criterion,BIC)最小的模型为最优模型。结果宁夏回族自治区儿童青少年近视检出率为70.3%,女生高于男生,城市高于乡镇,差异均有统计学意义(均为P<0.001);按学段分层后,随着年级的增加,近视检出率随之升高,小学最低,大学最高,不同学段近视检出率差异有统计学意义(P<0.001)。近视影响因素的LASSO-Logistic回归分析表明,城乡、性别、年龄、目前是否配戴眼镜、每日课间操节数、是否积极参加体力活动和过去6个月是否保持规律活动是小学生近视的影响因素(均为P<0.05);性别、目前是否配戴眼镜是初中生和高中生近视的影响因素(均为P<0.05);目前是否配戴眼镜是大学生近视的影响因素(P<0.05)。结论宁夏回族自治区儿童青少年近视检出率高,不同学段儿童青少年近视影响因素差异明显。配戴眼镜是控制近视的保护因素。应根据儿童青少年所处学段开展有针对性的视力相关知识的健康教育,增强其健康保健意识,提高儿童青少年视力。 展开更多
关键词 近视 学段 儿童青少年 LASSO回归
在线阅读 下载PDF
多传感器信息融合的轴承故障迁移诊断方法 被引量:2
17
作者 包从望 江伟 +1 位作者 张彩红 周大帅 《机电工程》 CAS 北大核心 2024年第5期878-885,共8页
在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合... 在重型装备低速、重载、强噪声环境下,采用单一传感器难以全面获取轴承的故障诊断信息,导致故障识别率低、识别不稳定,致使变工况下轴承故障迁移诊断失效。针对以上问题,提出了一种多传感器信息融合的轴承故障迁移诊断方法。首先,结合传感器的通道数,构建了堆叠卷积神经网络(MCNNs)提取各个通道的故障特征;然后,在MCNNs中引入最小绝对收缩与选择算子(Lasso),并通过网络反向传播完成了特征权值的更新,从而获得了多通道特征的融合;最后,利用源域数据对模型进行了训练,提取了故障特征,并完成了特征融合,采用损失函数完成了模型参数的优化,将源域训练得到的模型结果作为目标域的初始模型,利用目标域样本对初始模型的参数进行了微调,从而完成了模型迁移;并进行了信息融合效果、方法对比以及传感器信息采集属性的性能实验。研究结果表明:传感器的安装位置对信息融合影响较大,MCNNs+Lasso方法具有较好的特征融合效果,平均迁移诊断精度为99.03%,部分精度可达99.97%,在多个变工况的迁移任务中表现出较高迁移精度和良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 多传感器信息融合 堆叠卷积神经网络 最小绝对收缩与选择算子 迁移学习
在线阅读 下载PDF
基于X线的纹理分析在诊断跟距联合畸形中的临床应用价值
18
作者 郝海凤 张卜天 +3 位作者 滕佩宏 祖莅惠 刘畅 刘桂锋 《中国实验诊断学》 2024年第9期1021-1025,共5页
目的构建跟距联合畸形(talocalcaneal coalition)的X线影像组学模型,并检验其对跟距联合畸形的筛查诊断能力。方法回顾性分析2019年1月至2023年3月吉林大学中日联谊医院放射线科200例行踝关节或足部X线检查的患者临床放射资料(跟距联合... 目的构建跟距联合畸形(talocalcaneal coalition)的X线影像组学模型,并检验其对跟距联合畸形的筛查诊断能力。方法回顾性分析2019年1月至2023年3月吉林大学中日联谊医院放射线科200例行踝关节或足部X线检查的患者临床放射资料(跟距联合阳性及阴性各100例),手动勾画跟距联合畸形所在影像学区域,基于Python-pyradiomics库初步提取影像组学特征,通过曼-惠特尼U检验及最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)算法实现数据降维和特征筛选,用支持向量机(support vector machine,SVM)对筛选得到的影像组学特征分类建模,最终以受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under the curve,AUC)、精确度、召回率、敏感度、特异度及F1分数评价模型的诊断效能。结果从X线图像中初步提取到105个组学特征,经曼-惠特尼U检验及LASSO算法筛选出7个强相关性特征,最终以SVM分类器所构建模型的测试集AUC值为0.93,精确度、召回率、敏感度、特异度和F1分数分别为88%、85%、93%、92%、88%,对跟距联合畸形有良好的筛查诊断能力。结论基于X线的影像组学模型可作为筛查诊断跟距联合畸形的一种准确高效的无创性工具,帮助临床医师诊断跟距联合畸形。 展开更多
关键词 跟距联合畸形 影像组学 X线成像 最小绝对收缩和选择算子 支持向量机
在线阅读 下载PDF
高尿酸血症与慢性肺源性心脏病的相关性研究:基于LASSO回归与倾向性评分匹配法
19
作者 祁海燕 王捷 +1 位作者 罗玉玺 武云 《中国全科医学》 CAS 北大核心 2024年第24期2954-2960,2968,共8页
背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新... 背景近年来众多研究表明高尿酸血症(HUA)是某些疾病的影响因素,然而HUA是否为慢性肺源性心脏病(CPHD)的影响因素仍需进一步研究。目的探讨HUA与CPHD的相关性,旨在为CPHD患者血尿酸(SUA)水平的管理提供理论依据。方法纳入2019—2023年新疆医科大学第一附属医院收治的1171例慢性阻塞性肺疾病(COPD)患者为研究对象,根据其是否患有CPHD分为CPHD组(470例)和COPD组(701例)。收集患者一般资料和实验室检查及超声心动图检查结果。采用LASSO回归法对变量进行筛选,采用倾向性评分匹配法(PSM)排除混杂因素影响。采用多因素Logistic回归分析探究COPD患者合并CPHD的影响因素。结果CPHD组女性、汉族、吸烟、饮酒、特发性肺纤维化、慢性支气管炎、支气管哮喘比例、淋巴细胞百分比、左心室舒张末期内径、左心室收缩末期内径、心输出量、左心室射血分数低于COPD组,心功能3~4级、HUA、肺栓塞、先天性心脏病比例、红细胞计数、中性粒细胞百分比、SUA、血尿素氮、D-二聚体、N末端-B型利钠肽前体、右心房内径、右心室内径、左心房内径、右心室流出道内径、肺动脉内径高于COPD组,差异有统计学意义(P<0.05)。LASSO回归筛选出变量后进行PSM,最终得到COPD组469例、CPHD组469例。匹配后CPHD组心功能3~4级、HUA占比、右心房内径、右心室内径、右心室流出道内径、肺动脉内径大于COPD组,支气管哮喘、淋巴细胞百分比低于COPD组,差异有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,HUA升高、心功能3~4级、右心房内径、右心室内径、肺动脉内径增加是COPD患者合并CPHD的危险因素(P<0.05),患有支气管哮喘、左心室舒张末期内径增加为COPD患者合并CPHD的保护因素(P<0.05)。将SUA水平按四分位数分层,多因素Logistic回归分析结果显示,与Q1(SUA<237.31μmol/L)比较,Q4(SUA>381.29μmol/L)患者患有CPHD的风险增加1.421倍。结论HUA是CPHD疾病发生、发展的影响因素,积极控制SUA水平有助于预防CPHD的发生、发展。 展开更多
关键词 肺心病 高尿酸血症 肺疾病 慢性阻塞性 病例对照研究 最小绝对收缩和选择算法 倾向性评分
在线阅读 下载PDF
基于Nomogram模型鉴别肺腺癌病理亚型的临床价值
20
作者 王朝晖 岳军艳 《医学影像学杂志》 2024年第8期50-53,共4页
目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明... 目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明确的肺腺癌患者,将AIS和MIA归为第1组,IAC为第2组,比较两组患者年龄、性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征差异,采用3D Slicer软件进行图像分割,特征提取与选择,通过LASSO算法对特征进行降维,筛选影像组学特征构建预测模型。再采用R软件的rms工具包构建Nomogram模型,计算ROC曲线下面积(AUC),以评价Nomogram模型鉴别肺磨玻璃结节病理亚型的效能。结果 1)性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征均差异无统计学意义(P>0.05);2)筛选7个CT影像组学特征:平面度、大依赖低灰度强调、小波变换LHL第十百分位、小波变换HLL第十百分位、小波变换最小值、小波变换均值及小依赖低灰度强度比较,差异均有统计学意义(P均<0.05);3)基于CT影像组学特征建立预测肺磨玻璃结节病理亚型的Nomogram模型,训练集中AUC为0.863,准确率为87.9%,灵敏度为67.9%,特异度为91.1%;验证集中AUC为0.792,准确率为75.0%,灵敏度为66.7%,特异度为90.5%,可见此Nomogram模型具有较好的预测效能。结论 对于预测肺腺癌浸润程度,Nomogram模型具有明显优势,可作为一种鉴别手段。 展开更多
关键词 肺磨玻璃结节 最小绝对收缩和选择算子 Nomogram模型 病理亚型 体层摄影术 X线计算机
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部