期刊文献+
共找到6,025篇文章
< 1 2 250 >
每页显示 20 50 100
Optimizing Stock Market Prediction Using Long Short-Term Memory Networks
1
作者 Nadia Afrin Ritu Samsun Nahar Khandakar +1 位作者 Md. Masum Bhuiyan Md. Imdadul Islam 《Journal of Computer and Communications》 2025年第2期207-222,共16页
Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The ma... Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The main objective of our work is to predict the market performance of the Dhaka Stock Exchange (DSE) on day closing price using different Deep Learning techniques. In this study, we have used the LSTM (Long Short-Term Memory) network to forecast the data of DSE for the convenience of shareholders. We have enforced LSTM networks to train data as well as forecast the future time series that has differentiated with test data. We have computed the Root Mean Square Error (RMSE) value to scrutinize the error between the forecasted value and test data that diminished the error by updating the LSTM networks. As a consequence of the renovation of the network, the LSTM network provides tremendous performance which outperformed the existing works to predict stock market prices. 展开更多
关键词 long short-term memory (lstm) Stock Market PREDICTION Time Series Analysis Deep Learning
在线阅读 下载PDF
Wind Power Forecasting Using Grey Wolf Optimized Long Short-Term Memory Based on Numerical Weather Prediction
2
作者 Mohamed El-Dosuky Reema Alowaydan Bashayer Alqarni 《Journal of Power and Energy Engineering》 2024年第12期1-16,共16页
Wind power generation is among the most promising and eco-friendly energy sources today. Wind Power Forecasting (WPF) is essential for boosting energy efficiency and maintaining the operational stability of power grid... Wind power generation is among the most promising and eco-friendly energy sources today. Wind Power Forecasting (WPF) is essential for boosting energy efficiency and maintaining the operational stability of power grids. However, predicting wind power comes with significant challenges, such as weather uncertainties, wind variability, complex terrain, limited data, insufficient measurement infrastructure, intricate interdependencies, and short lead times. These factors make it difficult to accurately forecast wind behavior and respond to sudden power output changes. This study aims to precisely forecast electricity generation from wind turbines, minimize grid operation uncertainties, and enhance grid reliability. It leverages historical wind farm data and Numerical Weather Prediction data, using k-Nearest Neighbors for pre-processing, K-means clustering for categorization, and Long Short-Term Memory (LSTM) networks for training and testing, with model performance evaluated across multiple metrics. The Grey Wolf Optimized (GWO) LSTM classification technique, a deep learning model suited to time series analysis, effectively handles temporal dependencies in input data through memory cells and gradient-based optimization. Inspired by grey wolves’ hunting strategies, GWO is a population-based metaheuristic optimization algorithm known for its strong performance across diverse optimization tasks. The proposed Grey Wolf Optimized Deep Learning model achieves an R-squared value of 0.97279, demonstrating that it explains 97.28% of the variance in wind power data. This model surpasses a reference study that achieved an R-squared value of 0.92 with a hybrid deep learning approach but did not account for outliers or anomalous data. 展开更多
关键词 Wind Power Forecasting long short-term memory Numerical Weather Prediction Grey Wolf Optimization
在线阅读 下载PDF
Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis (PCA) and Long Short Term Memory (LSTM) 被引量:2
3
作者 YANG Qirui XU Kaizhou +2 位作者 ZHENG Xiaohu XIAO Lei BAO Jinsong 《Journal of Donghua University(English Edition)》 EI CAS 2019年第4期364-368,共5页
The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cut... The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy. 展开更多
关键词 HEALTH CONDITION recognition MILLING TOOL principal component analysis(PCA) long short term memory(lstm)
在线阅读 下载PDF
Conditional Random Field Tracking Model Based on a Visual Long Short Term Memory Network 被引量:3
4
作者 Pei-Xin Liu Zhao-Sheng Zhu +1 位作者 Xiao-Feng Ye Xiao-Feng Li 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期308-319,共12页
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es... In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation. 展开更多
关键词 Conditional random field(CRF) long short term memory network(lstm) motion estimation multiple object tracking(MOT)
在线阅读 下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
5
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
在线阅读 下载PDF
Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network 被引量:1
6
作者 Ming-jie He Hao Li +3 位作者 Jian-rong Xu Huan-ling Wang Wei-ya Xu Shi-zhuang Chen 《Water Science and Engineering》 EI CAS CSCD 2021年第2期149-158,共10页
The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-shor... The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%. 展开更多
关键词 Columnar jointed basalt Unloading relaxation long-short term memory(lstm)network Principal component analysis Stability assessment Baihetan Arch Dam
在线阅读 下载PDF
一种基于long short-term memory的唇语识别方法 被引量:4
7
作者 马宁 田国栋 周曦 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第1期109-117,共9页
唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往... 唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往大多数的方法从嘴唇外表信息入手。本方法用嘴唇关键点坐标描述嘴唇形变信息作为唇语视频的特征,它具有类内一致性和类间区分性的特点。然后利用LSTM对特征进行时序编码,它能学习具有区分性和泛化性的空间-时序特征。在公开的唇语数据集GRID、MIRACL-VC和Oulu VS上对本方法做了针对分割的单词或短语的说话者独立的唇语识别评估。在GRID和MIRACL-VC上,本方法的准确率比传统方法至少高30%;在Oulu VS上,本方法的准确率接近于最优结果。以上实验结果表明,本文提出的基于LSTM的唇语识别方法有效地解决了唇语视觉信息多样性的问题。 展开更多
关键词 唇语识别 long short-term memory 计算机视觉
在线阅读 下载PDF
Binaural Speech Separation Algorithm Based on Long and Short Time Memory Networks 被引量:1
8
作者 Lin Zhou Siyuan Lu +3 位作者 Qiuyue Zhong Ying Chen Yibin Tang Yan Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第6期1373-1386,共14页
Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial featur... Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions. 展开更多
关键词 Binaural speech separation long and short time memory networks feature vectors ideal ratio mask
在线阅读 下载PDF
Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory 被引量:3
9
作者 XUE Wendong CHAI Yuan +2 位作者 LI Qigan HONG Yongqiang ZHENG Gaofeng 《Instrumentation》 2018年第4期46-54,共9页
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par... The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines. 展开更多
关键词 RELAY Production LINE long and short-term memory network Keras DEEP Learning Framework Quality Prediction
在线阅读 下载PDF
Predicting and Curing Depression Using Long Short Term Memory and Global Vector
10
作者 Ayan Kumar Abdul Quadir Md +1 位作者 J.Christy Jackson Celestine Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5837-5852,共16页
In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingne... In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution. 展开更多
关键词 Emotion dynamics DEPRESSION heart rate internet of things global vector long short term memory machine learning sentiment analysis
在线阅读 下载PDF
State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory
11
作者 Inioluwa Obisakin Chikodinaka Vanessa Ekeanyanwu 《Open Journal of Applied Sciences》 CAS 2022年第8期1366-1382,共17页
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e... Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model. 展开更多
关键词 Support Vector Regression (SVR) long short-term memory (lstm) network State of Health (SOH) Estimation
在线阅读 下载PDF
Analyses of fear memory in Arc/Arg3.1-deficient mice: intact short-term memory and impaired long-term and remote memory
12
作者 Kazuyuki Yamada Chihiro Homma +3 位作者 Kentaro Tanemura Toshio Ikeda Shigeyoshi Itohara Yoshiko Nagaoka 《World Journal of Neuroscience》 2011年第1期1-8,共8页
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) was originally identified in patients with seizures. It is densely distributed in the hip-pocampus and amygdala in particular. Because the expression of ... Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) was originally identified in patients with seizures. It is densely distributed in the hip-pocampus and amygdala in particular. Because the expression of Arc/Arg3.1 is regulated by nerve in-puts, it is thought to be an immediate early gene. As shown both in vitro and in vivo, Arc/Arg3.1 is in-volved in synaptic consolidation and regulates some forms of learning and memory in rats and mice [1,2]. Furthermore, a recent study suggests that Arc/Arg3.1 may play a significant role in signal transmission via AMPA-type glutamate receptors [3-5]. Therefore, we conducted a detailed analysis of fear memory in Arc/Arg3.1-deficient mice. As previously reported, the knockout animals exhib-ited impaired fear memory in both contextual and cued test situations. Although Arc/Arg3.1-deficient mice showed almost the same performance as wild-type littermates 4 hr after a conditioning trial, their performance was impaired in the retention test after 24 hr or longer, either with or without reconsolidation. Immunohistochemical analyses showed an abnormal density of GluR1 in the hip-pocampus of Arc/Arg3.1-deficient mice;however, an application of AMPA potentiator did not improve memory performance in the mutant mice. Memory impairment in Arc/Arg3.1-deficient mice is so ro-bust that the mice provide a useful tool for devel-oping treatments for memory impairment. 展开更多
关键词 Activity-Regulated Cytoskeleton-Associated Protein (Arc/Arg3.1) KNOCKOUT (Ko) Mouse short- term memory long-term memory RECONSOLIDATION AMPA Receptor
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:1
13
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法
14
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
面向涡轮的PCA-POA-LSTM数据驱动建模及故障预警方法
15
作者 刘斌 白红艳 +3 位作者 何璐瑶 张晓北 田野 杨理践 《电子测量与仪器学报》 北大核心 2025年第1期145-155,共11页
针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维... 针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维技术,减少输入数据维度;其次,采用POA参数寻优方法选出最优超参数组合;然后,利用LSTM算法预测涡轮的输出参数;最后,在PCA-POA-LSTM涡轮数据驱动模型预测结果的基础上,结合滑动窗口法对涡轮故障进行预警,通过窗口内标准差定义报警阈值,攻克了涡轮故障预警的难题。结果表明,以PCA-POA-LSTM为基础的涡轮数据驱动建模实现了较高的精确度,平均绝对百分比误差均在0.396以下,平均绝对误差均在0.809以下,平均方根误差均在1.387以下。并且故障预警方法,至少可提前173个监测点发出故障预警信号,实现了对涡轮故障预警的目的,为未来开展涡轮健康管理提供了理论依据和技术支持。 展开更多
关键词 涡轮 鹈鹕优化算法 长短期记忆网络 主成分分析 数据驱动
在线阅读 下载PDF
基于改进LSTM的数码雷管模组印刷质量预测
16
作者 许可 高宏宇 +1 位作者 宫华 孙文娟 《沈阳理工大学学报》 CAS 2025年第1期9-18,24,共11页
由于数码雷管模组印刷过程中生产工艺复杂、强时序性等特点,其质量的精准预测已成为提高产品质量管理水平的关键。基于此提出一种改进长短期记忆(long short-term memory,LSTM)网络的数码雷管模组印刷质量预测模型。首先根据数码雷管模... 由于数码雷管模组印刷过程中生产工艺复杂、强时序性等特点,其质量的精准预测已成为提高产品质量管理水平的关键。基于此提出一种改进长短期记忆(long short-term memory,LSTM)网络的数码雷管模组印刷质量预测模型。首先根据数码雷管模组印刷过程提炼机器运行参数、环境参数与检测参数作为印刷产品质量的原始特征,并对关键检测参数进行时序特征重构以增强特征表达能力;其次基于改进的LSTM网络建立数码雷管模组印刷特征提取框架,采用卷积神经网络提取空间特征避免LSTM挖掘高维印刷特征时隐含关系的不足,通过全局注意力机制自适应学习不同时刻印刷特征对印刷产品质量的贡献度,为LSTM提取的深层时序特征分配不同权值;最后以深层特征作为输入,通过全连接网络实现数码雷管模组印刷产品的质量预测。实验结果表明,相较于BP神经网络、门控循环单元网络、LSTM等预测方法,改进的LSTM网络有效提高了数码雷管模组印刷产品质量的预测精度。 展开更多
关键词 模组印刷 质量预测 长短期记忆网络 特征重构
在线阅读 下载PDF
基于BiLSTM-AM-ResNet组合模型的山西焦煤价格预测
17
作者 樊园杰 睢祎平 张磊 《中国煤炭》 北大核心 2025年第3期42-51,共10页
煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题... 煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题,以山西焦煤价格为研究对象,分析影响煤炭价格的多种因素,并利用先进的人工智能机器学习算法来解决煤价预测问题。综合双向长短期记忆网络、注意力机制和残差神经网络的优势,构建双向长短期残差神经网络(BiLSTM-AM-ResNet)进行山西焦煤价格预测实验。采集2012-2023年的山西焦煤价格周度数据作为实验数据,对其进行空缺值处理和归一化处理,绘制相关系数热图并确定模型输入特征类型,进而简化模型并提高预测准确率与预测速度。通过模型预测实验得出,经BiLSTM-AM-ResNet模型预测的山西焦煤价格与实际煤价的发展趋势有着较高的线性拟合性,且预测结果与真实煤价在数值上非常接近,预测准确率达到了95.08%。 展开更多
关键词 焦煤价格预测 长短期记忆网络 注意力机制 残差神经网络 相关性分析
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测
18
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于LSTM-FC模型的充电站短期运行状态预测
19
作者 毕军 王嘉宁 王永兴 《华南理工大学学报(自然科学版)》 北大核心 2025年第2期58-67,共10页
公共充电站可用充电桩数量预测对于制定智能充电推荐策略和减少用户的充电排队时间具有重要意义。现阶段充电站运行状态研究通常集中于充电负荷预测,对于站内充电桩占用情况的研究较少,同时缺乏实际数据支撑。为此,基于充电站实际运行数... 公共充电站可用充电桩数量预测对于制定智能充电推荐策略和减少用户的充电排队时间具有重要意义。现阶段充电站运行状态研究通常集中于充电负荷预测,对于站内充电桩占用情况的研究较少,同时缺乏实际数据支撑。为此,基于充电站实际运行数据,提出一种基于长短时记忆(LSTM)网络与全连接(FC)网络结合的充电站内可用充电桩预测模型,有效结合了历史充电状态序列和相关特征。首先,将兰州市某充电站的订单数据转化为可用充电桩数量,并进行数据预处理;其次,提出了基于LSTM-FC的充电站运行状态预测模型;最后,将输入步长、隐藏层神经元数量和输出步长3种参数进行单独测试。为验证LSTM-FC模型的预测效果,将该模型与原始LSTM网络、BP神经网络模型和支持向量回归(SVR)模型进行对比。结果表明:LSTM-FC模型的平均绝对百分比误差分别降低了0.247、1.161和2.204个百分点,具有较高的预测精度。 展开更多
关键词 lstm神经网络 全连接网络 电动汽车 充电站运行状态
在线阅读 下载PDF
基于BP-DCKF-LSTM的锂离子电池SOC估计
20
作者 张宇 李维嘉 吴铁洲 《电源技术》 北大核心 2025年第1期155-166,共12页
电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项... 电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项式拟合法在拟合开路电压(OCV)与SOC时效果较差的问题,提出了一种基于BP神经网络的拟合方法,通过验证表明该方法能有效提高拟合精度。针对单独使用模型法或数据驱动法估计SOC各自存在的优缺点,提出了一种将DCKF与LSTM相结合的估计方法,在提高估计精度的同时,可以减少参数调节时间和训练成本。实验验证表明,BP-DCKF-LSTM算法的均方根误差(RMSE)和平均绝对误差(MAE)分别小于0.5%和0.4%,具有较高的SOC估算精度和鲁棒性。 展开更多
关键词 荷电状态 反向传播神经网络 双容积卡尔曼滤波 长短期记忆神经网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部