This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S...This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.展开更多
The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematica...The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.展开更多
This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valu...This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.展开更多
A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically. Based on the control Lyapunov function, a feedback control is obtained to stabilize the clos...A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically. Based on the control Lyapunov function, a feedback control is obtained to stabilize the closed-loop system. In addition, this method is applied to stabilize the Benchmark system. A simulation shows the effectiveness of the method.展开更多
The stabilization of discrete nonlinear systems is studied. Based on control Lyapunov functions, a sufficient and necessary condition for a quadratic function to be a control Lyapunov function is given. From this cond...The stabilization of discrete nonlinear systems is studied. Based on control Lyapunov functions, a sufficient and necessary condition for a quadratic function to be a control Lyapunov function is given. From this condition, a continuous state feedback law is constructed explicitly. It can globally asymptotically stabilize the equilibrium of the closed-loop system. A simulation example shows the effectiveness of the proposed method.展开更多
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attaine...This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results.展开更多
Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is ...Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that th...The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.展开更多
This paper presents delay-dependent stability analysis and controller synthesis methods for discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy system is transformed to an equivalent swit...This paper presents delay-dependent stability analysis and controller synthesis methods for discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy system is transformed to an equivalent switching fuzzy system. Consequently, the delay-dependent stabilization criteria are derived for the switching fuzzy system based on the piecewise Lyapunov function. The proposed conditions are given in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered in each subregion, and accordingly the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. Finally, a design example is given to show the validity of the proposed method.展开更多
For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It...For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It is shown that the constructed control remains effective in the presence of small perturbations.展开更多
Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic st...Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic stability conditions have been established in terms of linear matrix inequalities (LMIs). It is shown that the stability in the mean square for T-S fuzzy bilinear stochastic systems can be established if a PQLF can be constructed. Considering the established stability criterion, the controller can be designed by solving a set of (LMIs), and the closed loop system is asymptotically stable in the mean square. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.展开更多
In this paper, explicit closed form expressions of nonsmooth strict Lyapunov tunctlons for impulsive hybrid time-varying systems with discontinuous right-hand side is provided. Lyapunov functions are expressed in term...In this paper, explicit closed form expressions of nonsmooth strict Lyapunov tunctlons for impulsive hybrid time-varying systems with discontinuous right-hand side is provided. Lyapunov functions are expressed in terms of known nonstrict Lyapunov functions for the dynamics and finite sums of persistency of excitation parameters.展开更多
This paper deals with H-infinity filtering of discrete-time systems with polytopic uncertainties. The un- certain parameters are supposed to reside in a polytope. By using the parameter-dependent Lyapunov function app...This paper deals with H-infinity filtering of discrete-time systems with polytopic uncertainties. The un- certain parameters are supposed to reside in a polytope. By using the parameter-dependent Lyapunov function approach and introducing some slack matrix variables, a new sufficient condition for the H-infinity filter design is presented in terms of solutions to a set of linear matrix inequalities (LMIs). In contrast to the existing results for H-infinity filter design, the main advantage of the proposed design method is the reduced conservativeness. An example is provided to demonstrate the effectiveness of the proposed method.展开更多
Stability criteria for the complex-valued impulsive system are applied widely in many fields, such as quantum systems, which have been studied in recent decades. In this paper, I investigate the Lyapunov control of fi...Stability criteria for the complex-valued impulsive system are applied widely in many fields, such as quantum systems, which have been studied in recent decades. In this paper, I investigate the Lyapunov control of finite dimensional complex-valued systems with impulsive control fields, where the studied complex-valued systems are governed by the Schrödinger equation and can be used in quantum systems. By one Lyapunov function based on state error and the invariant principle of impulsive systems, I study the convergence of complex-valued systems with impulsive control fields and propose new results for the mentioned complex-valued systems in the form of sufficient conditions. A numerical simulation to validate the proposed control method is provided.展开更多
In this paper, we investigate one kind of complex-valued systems with an impulsive control field, where the complex-valued system is governed by the Schrödinger equation, which is used for quantum systems, etc. W...In this paper, we investigate one kind of complex-valued systems with an impulsive control field, where the complex-valued system is governed by the Schrödinger equation, which is used for quantum systems, etc. We study the convergence of the complex-valued system with impulsive control fields by one Lyapunov function based on the state distance and the invariant principle of impulsive systems. We propose new results for the mentioned complex-valued systems in the form of sufficient conditions and also present one numerical simulation to illustrate the effectiveness of the proposed control method.展开更多
The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First...The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First, by using the switched Lyapunov function approach, some new sufficient conditions ensuring the nominal discrete-time SLS system to be regular, casual and asymptotically stable for arbitrary switching laws are derived in terms of linear matrix inequalities. Then, the robust admissibility condition for the uncertain discrete-time SLS systems is presented. The obtained results can be viewed as an extension of previous works on the switched Lyapunov function approach from the regular switched linear systems to the switched linear singular cases. Numerical examples show the reduced conservatism and effectiveness of the proposed conditions.展开更多
A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with...A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.展开更多
This survey provides a brief overview on the control Lyapunov function(CLF)and control barrier function(CBF)for general nonlinear-affine control systems.The problem of control is formulated as an optimization problem ...This survey provides a brief overview on the control Lyapunov function(CLF)and control barrier function(CBF)for general nonlinear-affine control systems.The problem of control is formulated as an optimization problem where the optimal control policy is derived by solving a constrained quadratic programming(QP)problem.The CLF and CBF respectively characterize the stability objective and the safety objective for the nonlinear control systems.These objectives imply important properties including controllability,convergence,and robustness of control problems.Under this framework,optimal control corresponds to the minimal solution to a constrained QP problem.When uncertainties are explicitly considered,the setting of the CLF and CBF is proposed to study the input-to-state stability and input-to-state safety and to analyze the effect of disturbances.The recent theoretic progress and novel applications of CLF and CBF are systematically reviewed and discussed in this paper.Finally,we provide research directions that are significant for the advance of knowledge in this area.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.62176140)。
文摘This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.
基金Supported by Natural Science Foundation of Zhejiang Province P. R. China (Y105141)Natural Science Foundation of Fujian Province P.R.China (A0510025)Technological Project of Zhejiang Education Department,P. R. China(20050291)
文摘The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.
文摘This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of “set-valued derivative” of vector Lyapunov functions is introduced, some generalized comparison principles on discontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.
基金the Natural Science Foundation of Zhejiang Province,China (Y105141)Technological Project of Zhejiang Education Department,China (20050291).
文摘A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically. Based on the control Lyapunov function, a feedback control is obtained to stabilize the closed-loop system. In addition, this method is applied to stabilize the Benchmark system. A simulation shows the effectiveness of the method.
基金the Natural Science Foundation of China (60774011)the Natural ScienceFoundation of Zhejiang Province in China (Y105141)
文摘The stabilization of discrete nonlinear systems is studied. Based on control Lyapunov functions, a sufficient and necessary condition for a quadratic function to be a control Lyapunov function is given. From this condition, a continuous state feedback law is constructed explicitly. It can globally asymptotically stabilize the equilibrium of the closed-loop system. A simulation example shows the effectiveness of the proposed method.
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
基金Project partially supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No. 101005)the National Natural Science Foundation of China (Grant No. 60904004)the Key Youth Science and Technology Foundation of University of Electronic Science and Technology of China (Grant No. L08010201JX0720)
文摘This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results.
文摘Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
文摘The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.
基金supported by the National Natural Science Foundation of China (No.60804021)
文摘This paper presents delay-dependent stability analysis and controller synthesis methods for discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy system is transformed to an equivalent switching fuzzy system. Consequently, the delay-dependent stabilization criteria are derived for the switching fuzzy system based on the piecewise Lyapunov function. The proposed conditions are given in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered in each subregion, and accordingly the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. Finally, a design example is given to show the validity of the proposed method.
基金supported by Russian Foundation for Basic Research(Grant No.08-01-00234,08-01-00411,08-08- 00292)
文摘For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It is shown that the constructed control remains effective in the presence of small perturbations.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61304063, in part by the Fundamental Research Funds for the Central Universities under Grant 72103676, in part by the Science and Technology Research Foundation of Yanan under Grant 2013-KG16, in part by Yanan University under Grant YDBK2013-12, 2012SXTS07.
文摘Based on a piecewise quadratic lyapunov function (PQLF), this paper presents stochastic stability analysis and synthesis methods for ItO and discrete T-S fuzzy bilinear stochastic systems. Two improved stochastic stability conditions have been established in terms of linear matrix inequalities (LMIs). It is shown that the stability in the mean square for T-S fuzzy bilinear stochastic systems can be established if a PQLF can be constructed. Considering the established stability criterion, the controller can be designed by solving a set of (LMIs), and the closed loop system is asymptotically stable in the mean square. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.
文摘In this paper, explicit closed form expressions of nonsmooth strict Lyapunov tunctlons for impulsive hybrid time-varying systems with discontinuous right-hand side is provided. Lyapunov functions are expressed in terms of known nonstrict Lyapunov functions for the dynamics and finite sums of persistency of excitation parameters.
基金supported by the Scientific Research Program for the Education Department of Liaoning Province of China (No.2008017)the Postdoctoral Science Foundation of China (No. 20090451275)the Funds of National Science of China (No. 61104071)
文摘This paper deals with H-infinity filtering of discrete-time systems with polytopic uncertainties. The un- certain parameters are supposed to reside in a polytope. By using the parameter-dependent Lyapunov function approach and introducing some slack matrix variables, a new sufficient condition for the H-infinity filter design is presented in terms of solutions to a set of linear matrix inequalities (LMIs). In contrast to the existing results for H-infinity filter design, the main advantage of the proposed design method is the reduced conservativeness. An example is provided to demonstrate the effectiveness of the proposed method.
文摘Stability criteria for the complex-valued impulsive system are applied widely in many fields, such as quantum systems, which have been studied in recent decades. In this paper, I investigate the Lyapunov control of finite dimensional complex-valued systems with impulsive control fields, where the studied complex-valued systems are governed by the Schrödinger equation and can be used in quantum systems. By one Lyapunov function based on state error and the invariant principle of impulsive systems, I study the convergence of complex-valued systems with impulsive control fields and propose new results for the mentioned complex-valued systems in the form of sufficient conditions. A numerical simulation to validate the proposed control method is provided.
文摘In this paper, we investigate one kind of complex-valued systems with an impulsive control field, where the complex-valued system is governed by the Schrödinger equation, which is used for quantum systems, etc. We study the convergence of the complex-valued system with impulsive control fields by one Lyapunov function based on the state distance and the invariant principle of impulsive systems. We propose new results for the mentioned complex-valued systems in the form of sufficient conditions and also present one numerical simulation to illustrate the effectiveness of the proposed control method.
基金The National Natural Science Foundation of China(No.60835001)the Key Project of Ministry of Education of China (No.108060)
文摘The robust admissibility analysis of a class of uncertain discrete-time switched linear singular(SLS) systems for arbitrary switching laws is addressed. The parameter uncertainty is assumed to be norm-bounded. First, by using the switched Lyapunov function approach, some new sufficient conditions ensuring the nominal discrete-time SLS system to be regular, casual and asymptotically stable for arbitrary switching laws are derived in terms of linear matrix inequalities. Then, the robust admissibility condition for the uncertain discrete-time SLS systems is presented. The obtained results can be viewed as an extension of previous works on the switched Lyapunov function approach from the regular switched linear systems to the switched linear singular cases. Numerical examples show the reduced conservatism and effectiveness of the proposed conditions.
基金supported in part by the National Natural Science Foundation of China(6202530361973147)the LiaoNing Revitalization Talents Program(XLYC1907050)。
文摘A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.
基金supported in part by the National Natural Science Foundation of China(U22B2046,62073079,62088101)in part by the General Joint Fund of the Equipment Advance Research Program of Ministry of Education(8091B022114)in part by NPRP(NPRP 9-466-1-103)from Qatar National Research Fund。
文摘This survey provides a brief overview on the control Lyapunov function(CLF)and control barrier function(CBF)for general nonlinear-affine control systems.The problem of control is formulated as an optimization problem where the optimal control policy is derived by solving a constrained quadratic programming(QP)problem.The CLF and CBF respectively characterize the stability objective and the safety objective for the nonlinear control systems.These objectives imply important properties including controllability,convergence,and robustness of control problems.Under this framework,optimal control corresponds to the minimal solution to a constrained QP problem.When uncertainties are explicitly considered,the setting of the CLF and CBF is proposed to study the input-to-state stability and input-to-state safety and to analyze the effect of disturbances.The recent theoretic progress and novel applications of CLF and CBF are systematically reviewed and discussed in this paper.Finally,we provide research directions that are significant for the advance of knowledge in this area.