Albira SI小动物单光子发射断层显像-X线计算机体层成像仪(SPECT-CT)是单光子放射性药物临床前研究的先进影像工具,其质量控制及检测性能是图像质量和实验数据可靠性的基本保障。为评价Albira SI SPECT-CT设备应用的真实性、可靠性,采...Albira SI小动物单光子发射断层显像-X线计算机体层成像仪(SPECT-CT)是单光子放射性药物临床前研究的先进影像工具,其质量控制及检测性能是图像质量和实验数据可靠性的基本保障。为评价Albira SI SPECT-CT设备应用的真实性、可靠性,采用临床常用单光子核素^(99m)Tc对Albira SI小动物SPECT-CT进行季度性质量控制,同时进行测量结果的线性、稳定性、偏差的检测,并初步尝试小动物骨代谢扫描。结果表明,该设备与放射性活度之间线性关系良好,稳定性强,与常用活度测量设备测量结果差异较小。Albira SI小动物SPECT-CT能够准确反映单光子核素^(99m)Tc的放射性活度分布,小鼠骨代谢显像效果好,适用于临床前放射性药物研究。本研究中建立的系统研究SPECT-CT性能的方法可为类似设备的操作提供方法学依据。展开更多
Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accou...Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.展开更多
风场预报是智能网格预报的重要支撑,提高风场预报准确率,能够为风能预报提供核心保障。在综合评估2023年汛期CMA-MESO 3 km(China Meteorological Administration Mesoscale Model at 3 km resolution)模式在山西逐小时10 m风预报能力...风场预报是智能网格预报的重要支撑,提高风场预报准确率,能够为风能预报提供核心保障。在综合评估2023年汛期CMA-MESO 3 km(China Meteorological Administration Mesoscale Model at 3 km resolution)模式在山西逐小时10 m风预报能力的基础上,基于自适应Kalman滤波方法,开展针对纬向风(U)、经向风(V)的客观订正,以期建立适应山西复杂地形特征的客观预报方案,促进国产模式本地化业务应用。结果表明:①全风速预报偏大,预报误差呈“单峰型”日变化,峰值出现在18:00-20:00,正偏差主要位于忻定和太原盆地以及山西南部。②U、V预报误差与预报值呈显著正相关,需考虑不同强度预报风速误差随时效变化的特征,避免订正不足或过订正。③Kalman滤波方案(KM)订正幅度小且不稳定,订正后均方根误差R MSE削减不足6%,准确率提升不足2%。④基于动态分级的改进方案(CBKM)突破KM订正瓶颈,更准确地估计系统误差并有效订正,更好再现不同地区风速日变化,平均误差M E趋近0,R MSE削减32.8%,风向、风速预报准确率分别提升8.29%、7.92%,峰值时刻订正率达83.49%。展开更多
Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume respon...Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.展开更多
文摘Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.
文摘风场预报是智能网格预报的重要支撑,提高风场预报准确率,能够为风能预报提供核心保障。在综合评估2023年汛期CMA-MESO 3 km(China Meteorological Administration Mesoscale Model at 3 km resolution)模式在山西逐小时10 m风预报能力的基础上,基于自适应Kalman滤波方法,开展针对纬向风(U)、经向风(V)的客观订正,以期建立适应山西复杂地形特征的客观预报方案,促进国产模式本地化业务应用。结果表明:①全风速预报偏大,预报误差呈“单峰型”日变化,峰值出现在18:00-20:00,正偏差主要位于忻定和太原盆地以及山西南部。②U、V预报误差与预报值呈显著正相关,需考虑不同强度预报风速误差随时效变化的特征,避免订正不足或过订正。③Kalman滤波方案(KM)订正幅度小且不稳定,订正后均方根误差R MSE削减不足6%,准确率提升不足2%。④基于动态分级的改进方案(CBKM)突破KM订正瓶颈,更准确地估计系统误差并有效订正,更好再现不同地区风速日变化,平均误差M E趋近0,R MSE削减32.8%,风向、风速预报准确率分别提升8.29%、7.92%,峰值时刻订正率达83.49%。
基金supported by the National Natural Science Foundation of China,No.31930068National Key Research and Development Program of China,Nos.2018YFA0107302 and 2021YFA1101203(all to HX).
文摘Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.