期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Simulation of High-Transmission Chiral Metamaterial with Impedance Matching to a Vacuum
1
作者 贾秀丽 孟庆鑫 +1 位作者 王晓鸥 周忠祥 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期67-71,共5页
For a previously simulated eight-broadband negative-refraction-index chiral metamaterial, we use S-parameter retrieval methods to determine the complex effective permittivity, permeability, and the impedance. We also ... For a previously simulated eight-broadband negative-refraction-index chiral metamaterial, we use S-parameter retrieval methods to determine the complex effective permittivity, permeability, and the impedance. We also calculate the figure of merit, which is defined as the ratio of the real and the imaginary refraction components, and compare it with those of fishnet metamaterials. The simulation results show that our chiral metamaterial exhibits high transmission and impedance matching to a vacuum. Also, we determine that the electric and magnetic dipoles of the surface plasmons play an important role in determining the nine resonance frequencies. Therefore, this investigation provides an experimental basis for developing metamaterial devices with multiple and broad resonance frequency bands. 展开更多
关键词 of on is it RCP simulation of High-Transmission Chiral Metamaterial with Impedance matching to a Vacuum in for with
在线阅读 下载PDF
Simulation design of P–I–N-type all-perovskite solar cells with high efficiency 被引量:2
2
作者 Hui-Jing Du Wei-Chao Wang Yi-Fan Gu 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期529-535,共7页
According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers an... According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem. 展开更多
关键词 all-perovskite solar cells device simulation band matching photovoltaic performance
在线阅读 下载PDF
Resource pre-allocation algorithms for low-energy task scheduling of cloud computing 被引量:4
3
作者 Xiaolong Xu Lingling Cao Xinheng Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期457-469,共13页
In order to lower the power consumption and improve the coefficient of resource utilization of current cloud computing systems, this paper proposes two resource pre-allocation algorithms based on the "shut down the r... In order to lower the power consumption and improve the coefficient of resource utilization of current cloud computing systems, this paper proposes two resource pre-allocation algorithms based on the "shut down the redundant, turn on the demanded" strategy here. Firstly, a green cloud computing model is presented, abstracting the task scheduling problem to the virtual machine deployment issue with the virtualization technology. Secondly, the future workloads of system need to be predicted: a cubic exponential smoothing algorithm based on the conservative control(CESCC) strategy is proposed, combining with the current state and resource distribution of system, in order to calculate the demand of resources for the next period of task requests. Then, a multi-objective constrained optimization model of power consumption and a low-energy resource allocation algorithm based on probabilistic matching(RA-PM) are proposed. In order to reduce the power consumption further, the resource allocation algorithm based on the improved simulated annealing(RA-ISA) is designed with the improved simulated annealing algorithm. Experimental results show that the prediction and conservative control strategy make resource pre-allocation catch up with demands, and improve the efficiency of real-time response and the stability of the system. Both RA-PM and RA-ISA can activate fewer hosts, achieve better load balance among the set of high applicable hosts, maximize the utilization of resources, and greatly reduce the power consumption of cloud computing systems. 展开更多
关键词 green cloud computing power consumption prediction resource allocation probabilistic matching simulated annealing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部