期刊文献+
共找到755篇文章
< 1 2 38 >
每页显示 20 50 100
Kinematic calibration under the expectation maximization framework for exoskeletal inertial motion capture system
1
作者 QIN Weiwei GUO Wenxin +2 位作者 HU Chen LIU Gang SONG Tainian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期769-779,共11页
This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters ... This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method. 展开更多
关键词 human motion capture kinematic calibration EXOSKELETON gyroscopic drift expectation maximization(EM)
在线阅读 下载PDF
Studies on unfolding energy spectra of neutrons using maximumlikelihood expectation–maximization method 被引量:3
2
作者 Mehrdad Shahmohammadi Beni D.Krstic +1 位作者 D.Nikezic K.N.Yu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第9期24-33,共10页
Energy spectra of neutrons are important for identification of unknown neutron sources and for determination of the equivalent dose. Although standard energy spectra of neutrons are available in some situations, e.g.,... Energy spectra of neutrons are important for identification of unknown neutron sources and for determination of the equivalent dose. Although standard energy spectra of neutrons are available in some situations, e.g., for some radiotherapy treatment machines, they are unknown in other cases, e.g., for photoneutrons created in radiotherapy rooms and neutrons generated in nuclear reactors. In situations where neutron energy spectra need to be determined, unfolding the required neutron energy spectra using the Bonner sphere spectrometer (BSS) and nested neutron spectrometer (NNS) has been found promising. However, without any prior knowledge on the spectra, the unfolding process has remained a tedious task. In this work, a standalone numerical tool named ‘‘NRUunfold’’ was developed which could satisfactorily unfold neutron spectra for BSS or NNS, or any other systems using similar detection methodology. A generic and versatile algorithm based on maximum-likelihood expectation– maximization method was developed and benchmarked against the widely used STAY’SL algorithm which was based on the least squares method. The present method could output decent results in the absence of precisely calculated initial guess, although it was also remarked that employment of exceptionally bizarre initial spectra could lead to some unreasonable output spectra. The neutron count rates computed using the manufacturer’s response functions were used for sensitivity studies. The present NRUunfold code could be useful for neutron energy spectrum unfolding for BSS or NNS applications in the absence of a precisely calculated initial guess. 展开更多
关键词 NEUTRON spectrometry maximum-likelihood expectation–maximization Nested NEUTRON spectrometer
在线阅读 下载PDF
The study of a neutron spectrum unfolding method based on particle swarm optimization combined with maximum likelihood expectation maximization 被引量:1
3
作者 Hong-Fei Xiao Qing-Xian Zhang +5 位作者 He-Yi Tan Bin Shi Jun Chen Zhi-Qiang Cheng Jian Zhang Rui Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期149-160,共12页
The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In or... The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%. 展开更多
关键词 Particle swarm optimization maximum likelihood expectation maximization Neutron spectrum unfolding Bonner spheres spectrometer Monte Carlo method
在线阅读 下载PDF
Parallel Expectation-Maximization Algorithm for Large Databases
4
作者 黄浩 宋瀚涛 陆玉昌 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期420-424,共5页
A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in ge... A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in generic statistical problems, the EM algorithm has been widely used in many domains. But it often requires significant computational resources. So it is needed to develop more elaborate methods to adapt the databases to a large number of records or large dimensionality. The parallel EM algorithm is based on partial Esteps which has the standard convergence guarantee of EM. The algorithm utilizes fully the advantage of parallel computation. It was confirmed that the algorithm obtains about 2.6 speedups in contrast with the standard EM algorithm through its application to large databases. The running time will decrease near linearly when the number of processors increasing. 展开更多
关键词 expectation-maximization (EM) algorithm incremental EM lazy EM parallel EM
在线阅读 下载PDF
Integration of Expectation Maximization using Gaussian Mixture Models and Naïve Bayes for Intrusion Detection
5
作者 Loka Raj Ghimire Roshan Chitrakar 《Journal of Computer Science Research》 2021年第2期1-10,共10页
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ... Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category. 展开更多
关键词 Anomaly detection Clustering EM classification expectation maximization(EM) Gaussian mixture model(GMM) GMM classification Intrusion detection Naïve Bayes classification
在线阅读 下载PDF
A Bayesian expectation maximization algorithm for state estimation of intelligent vehicles considering data loss and noise uncertainty
6
作者 Yan WANG Feng TIAN +1 位作者 Jianqiang WANG Keqiang LI 《Science China(Technological Sciences)》 2025年第2期257-268,共12页
Sideslip angle,yaw rate,and vehicle velocity are essential for intelligent vehicle control.Since these vehicle states are not measured directly,some Kalman-based approaches have been developed to estimate these states... Sideslip angle,yaw rate,and vehicle velocity are essential for intelligent vehicle control.Since these vehicle states are not measured directly,some Kalman-based approaches have been developed to estimate these states using in-vehicle sensors.However,the existing studies seldom account for the influence of sensor data loss on estimation accuracy.In addition,the process and measurement noise change during the estimation process because of the various driving conditions.To address these problems,an expectation-maximization robust extended Kalman filter(EMREKF)is proposed.Firstly,a robust extended Kalman filter(REKF)is developed to deal with the impact of missing measurements.Then,an improved expectation maximization(EM)algorithm that considers data loss is presented to update the noise parameter of the REKF dynamically.Finally,the improved EM is fused with the REKF to form the EMREKF to estimate vehicle state.The experimental results demonstrate that the EMREKF outperforms EKF,REKF,and maximum correntropy criterion EKF for various degrees of data loss and the proposed algorithm has a strong adaptive ability to different driving conditions. 展开更多
关键词 intelligent vehicles state estimation expectation maximization method robust extended Kalman filter
原文传递
基于TLF-YOLOv8的堆叠垃圾实例分割算法
7
作者 李利 梁晶 +2 位作者 陈旭东 潘红光 寇发荣 《科学技术与工程》 北大核心 2025年第5期2009-2018,共10页
相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的... 相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的实例分割算法。首先,在数据预处理部分进行特征数据分层,并通过双层图卷积网络(graph convolutions network,GCN)实现双分支特征融合,减弱堆叠情况对被遮挡物体特征的影响,从而解决复杂堆叠遮挡下的实例分割问题。同时,为了解决同类待测物体易混淆的问题,融入了软阈值化非极大值抑制算法和新的交并比算法。最后,根据应用场景和数据集的复杂性,优化了主干网络部分的特征提取模块,并在主干网络部分引入了多尺度注意力机制,有效提高了模型的检测性能。实验使用遮挡垃圾分类实例分割数据集,实验结果表明该方法的平均准确率、交并比阈值为0.5时的平均准确率(AP_(50))、交并比为0.5~0.95时的平均准确率(AP_(50~95))等指标较之前的其他方法更优。相较于原YOLOv8算法,检测AP_(50)提高了7.9%,分割AP_(50)提高了5.4%,具有更好的检测和分割效果。 展开更多
关键词 垃圾堆叠 双层特征解耦融合 YOLOv8算法 软阈值化非极大值抑制 动态非单调聚焦机制 期望最大化注意力
在线阅读 下载PDF
多尺度和多层级特征融合的人体姿态估计
8
作者 王燕妮 胡敏 +2 位作者 韩世鹏 陈艺瑄 吕昊 《计算机工程与应用》 北大核心 2025年第6期199-209,共11页
人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(m... 人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(multi-scale and multi-level network,MSLNet)。采用高分辨率网络(high-resolution network,HRNet)作为主干,通过跨尺度信息交互,实现不同分辨率特征图之间的信息交换,获取同时包含细粒度和粗粒度的姿态特征;引入期望最大化注意力-加权双向特征金字塔网络(expectation maximization attention-bidirectional feature pyramid network,EMA-BiFPN),实现多尺度特征融合后的多层级特征聚合,从局部到全局捕捉人体姿态的细节和关联信息;设计由残差结构组成的关键点检测头,完成输出特征的最终融合并提升人体关键点检测准确率。实验结果表明,MSLNet在COCO和MPII数据集上分别取得了75.8%和91.1%的准确率,实现了最优精度,充分验证了MSLNet能够融合尺度和层级之间的互补特征,进而提升人体姿态估计精度。 展开更多
关键词 高分辨率网络(HRNet) 人体姿态估计 期望最大化注意力 双向特征金字塔网络 特征融合
在线阅读 下载PDF
基于expectation maximization算法的Mamdani-Larsen模糊系统及其在时间序列预测中的应用 被引量:4
9
作者 张钦礼 王士同 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第1期107-112,共6页
Epanechnikov混合模型和Mamdani-Larsen模糊系统之间的对应关系被建立:任何一个Epanechnikov混合模型都唯一对应着一个Mamdani-Larsen模糊系统,在一定条件下,Epanechnikov混合模型的条件均值和Mamdani-Larsen模糊模型的输出是等价的。... Epanechnikov混合模型和Mamdani-Larsen模糊系统之间的对应关系被建立:任何一个Epanechnikov混合模型都唯一对应着一个Mamdani-Larsen模糊系统,在一定条件下,Epanechnikov混合模型的条件均值和Mamdani-Larsen模糊模型的输出是等价的。一个设计模糊系统的新方法被提出,即利用expectation maximization算法设计模糊系统。将设计的模糊系统应用于时间序列预测,仿真结果表明:利用EM算法设计的模糊系统比其他模糊系统精度更高,抗噪性更强。 展开更多
关键词 expectation maximization(EM)算法 Mamdani-Larsen模糊系统 Epanechnikov混合模型 混沌时间序列
原文传递
考虑状态增量的自适应Wiener过程剩余寿命预测
10
作者 李军星 李文琪 +4 位作者 娄泰山 邱明 王治华 庞晓旭 尹若军 《计算机集成制造系统》 北大核心 2025年第1期306-315,共10页
针对传统自适应Wiener过程剩余寿命预测方法具有相邻两个时刻状态量相同隐含假设的问题,提出一种考虑状态增量的自适应Wiener过程剩余寿命预测方法。首先利用Wiener过程来表征产品性能退化过程,建立具有状态增量的Wiener过程状态空间方... 针对传统自适应Wiener过程剩余寿命预测方法具有相邻两个时刻状态量相同隐含假设的问题,提出一种考虑状态增量的自适应Wiener过程剩余寿命预测方法。首先利用Wiener过程来表征产品性能退化过程,建立具有状态增量的Wiener过程状态空间方程,推导出退化模型参数在线更新解析式;为了充分开发利用同类产品的历史退化数据,提出基于期望最大化(EM)算法的信息融合方法,用以估计状态空间方程参数初始值;其次,利用首达时概念,得到产品剩余寿命的分布函数和点估计。最后,结合红外发光二极管IRLED和关节轴承工程实例对所提方法进行验证,与传统方法相比,所提方法的预测精度分别提高了约40.07%和101.23%。 展开更多
关键词 剩余寿命预测 状态增量 自适应Wiener过程 期望最大化算法 性能退化
在线阅读 下载PDF
AE-EM:一种期望最大化Web入侵检测算法
11
作者 尹兆良 黄于欣 余正涛 《计算机工程与应用》 北大核心 2025年第3期315-325,共11页
现有的入侵检测算法集中在模式匹配、阈值分割法和多层感知机等机器学习和以神经网络深度学习方法上,在处理基于签名和异常的入侵时效果显著,但耗时费力。在面对Web入侵场景时,现有方法将检测模式重心放在网络流量分析(NTA)上,对URL携... 现有的入侵检测算法集中在模式匹配、阈值分割法和多层感知机等机器学习和以神经网络深度学习方法上,在处理基于签名和异常的入侵时效果显著,但耗时费力。在面对Web入侵场景时,现有方法将检测模式重心放在网络流量分析(NTA)上,对URL携带的负载信息和流量之间的关联语义信息提取不足,异常检测效果有待提升。提出一种无监督算法,名为注意力扩展期望最大化算法(attention expand expectation-maximization algorithm,AE-EM),该算法提取应用层URL中的攻击负载语义,采用Attention机制混合编码网络层流量结构化数据,训练融合多维特征和关联应用层语义的向量作为算法的输入,使用轻量化期望最大化算法估计高斯混合模型的参数,用于网络安全入侵检测的Web入侵检测场景。通过在基线数据集上使用常用的学习算法和消融实验比较,提出的AE-EM算法在Web入侵检测领域准确率和性能上优于传统算法。 展开更多
关键词 入侵检测 Web攻击检测 注意力机制 EM算法 AE-EM算法
在线阅读 下载PDF
深度渐进重建算法对肥胖患者^(18)F-脱氧葡萄糖PET/CT图像质量和标准化摄取值的影响
12
作者 毛舟 孟庆乐 +6 位作者 杨瑞 李如帅 魏驰 刘任从 王峰 徐磊 曹艳 《中国医学装备》 2025年第1期24-29,共6页
目的:探讨深度渐进式重建(DPR)算法对肥胖患者氟-18脱氧葡萄糖正电子发射计算机断层扫描(^(18)F-FDG PET)图像质量和标准化摄取值(SUV)的提升作用。方法:回顾性收集2023年9月至2024年5月在南京医科大学附属南京医院行^(18)F-FDG PET/CT... 目的:探讨深度渐进式重建(DPR)算法对肥胖患者氟-18脱氧葡萄糖正电子发射计算机断层扫描(^(18)F-FDG PET)图像质量和标准化摄取值(SUV)的提升作用。方法:回顾性收集2023年9月至2024年5月在南京医科大学附属南京医院行^(18)F-FDG PET/CT检查的27例肥胖患者图像,所有患者均采用uMI 780型PET/CT采集图像。采用有序子集最大期望值(OSEM)迭代算法和DPR算法进行PET图像重建,测量PET/CT图像散射符合计数率、真符合计数率、噪声等效计数率(NECR)和散射分数(SF)。评价肝脏^(18)F-FDG PET/CT图像信噪比(SNR),病灶最大SUV(SUVmax)、背景比(TBR)、对比度(CNR)和视觉评分的PET图像质量指标。分析DPR与OSEM两种重建算法各评价指标的差异性及一致性。结果:27例患者平均^(18)F-FDG注射活度为(0.12±0.01)mCi(1 mCi=37 MBq)/kg,PET图像真符合计数率、NECR和SF分别为(153.73±25.09)、(44.81±8.47)kcps和(36.77±1.91)%。DPR算法所得肝脏SNR为15.83±3.60,显著高于OSEM算法9.06±1.87,差异有统计学意义(t=20.6,P<0.05),且两种算法所得的肝脏SNR存在显著相关性(R2=0.91,P<0.0001)。在27个摄取^(18)F-FDG病灶中,OSEM算法所得病灶SUV_(max)、TBR和CNR分别为(5.86±1.49)、(1.95±0.49)和(17.74±4.77),均低于DPR算法的相应值,差异有统计学意义(t=9.03、8.79、15.49,P<0.05),且两种算法所得的病灶SUV_(max)、TBR和CNR存在显著相关性(R2=0.71、0.70、0.76,P<0.05)。DPR算法所得PET图像视觉评分为4(3,5)分,显著高于OSEM算法[3(2,4)]分,差异有统计学意义(U=396,P<0.05)。结论:肥胖患者^(18)F-FDG PET/CT显像散射效应较强,噪声等效计数率较低。DPR重建算法较OSEM算法能显著提高PET图像信噪比和病灶对比度,对病灶SUVmax有显著增益作用,能显著提升肥胖患者^(18)F-FDG PET/CT图像质量。 展开更多
关键词 正电子发射断层扫描/X射线计算机断层成像(PET/CT) 脱氧葡萄糖 有序子集期望最大 深度学习
在线阅读 下载PDF
提高长尾数据知识图谱补全性能的一种新算法
13
作者 何苗惠 段旭祥 吴至友 《运筹学学报(中英文)》 北大核心 2025年第1期41-54,共14页
知识图谱是众多智能应用中一种重要的语义数据,但其数据的不完备性给实际应用带来了很多困难,因此需要对知识图谱中缺失的语义信息进行补全。知识图谱嵌入是知识图谱补全的重要方法之一,这类方法通常在非长尾数据情况下具有较好的效果,... 知识图谱是众多智能应用中一种重要的语义数据,但其数据的不完备性给实际应用带来了很多困难,因此需要对知识图谱中缺失的语义信息进行补全。知识图谱嵌入是知识图谱补全的重要方法之一,这类方法通常在非长尾数据情况下具有较好的效果,但在长尾数据情况下其效果较差。由于非长尾数据的语义较丰富,为了提升长尾数据情况下知识图谱补全效果,本文将非长尾数据作为监督知识迁移到长尾数据中,提出了一种新的算法——融入期望最大化算法思想的双重嵌入方法,来改进长尾数据的知识图谱补全性能,进而提高其实际应用效果。通过在FB15K数据集中进行链接预测任务的对比实验,实验结果表明本文提出的融入期望最大化算法思想的双重嵌入方法效果较好。 展开更多
关键词 知识图谱补全 知识图谱嵌入 期望最大化算法 双重嵌入方法
在线阅读 下载PDF
A localization approach for multiple sound sources via an expectation maximization algorithm using differential microphone arrays 被引量:1
14
作者 DING Shaowei CHEN Huawei 《Chinese Journal of Acoustics》 CSCD 2017年第4期454-472,共19页
Conventional sound localization approaches with small-sized microphone arrays are usually sensitive to noise and reverberation. To deal with the problem, an approach based on expectation maximization algorithm with di... Conventional sound localization approaches with small-sized microphone arrays are usually sensitive to noise and reverberation. To deal with the problem, an approach based on expectation maximization algorithm with differential microphone arrays(DMAs) is proposed.Firstly, the parameters of Gaussian mixture model for time-frequency instantaneous direction estimation are estimated through the EM algorithm, and then the direction of each sound source is estimated via time-frequency separation. In order to overcome the weakness of existing time-frequency separation techniques, an improved method, which combines the advantages of both the hard and soft separation methods, is also proposed. The improved time-frequency separation method is shown to be less sensitive to noise and reverberation. Simulation and experimental results demonstrate that the proposed localization approach is superior to its existing counterparts in terms of localization accuracy and robustness. 展开更多
关键词 LOCALIZATION maximization HISTOGRAM AZIMUTH speaker clustering robustness sized OVERCOME expectation
原文传递
Incremental expectation maximization principal component analysis for missing value imputation for coevolving EEG data
15
作者 Sun Hee KIM Hyung Jeong YANG Kam Swee NG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第8期687-697,共11页
Missing values occur in bio-signal processing for various reasons,including technical problems or biological char-acteristics.These missing values are then either simply excluded or substituted with estimated values f... Missing values occur in bio-signal processing for various reasons,including technical problems or biological char-acteristics.These missing values are then either simply excluded or substituted with estimated values for further processing.When the missing signal values are estimated for electroencephalography (EEG) signals,an example where electrical signals arrive quickly and successively,rapid processing of high-speed data is required for immediate decision making.In this study,we propose an incremental expectation maximization principal component analysis (iEMPCA) method that automatically estimates missing values from multivariable EEG time series data without requiring a whole and complete data set.The proposed method solves the problem of a biased model,which inevitably results from simply removing incomplete data rather than estimating them,and thus reduces the loss of information by incorporating missing values in real time.By using an incremental approach,the proposed method alsominimizes memory usage and processing time of continuously arriving data.Experimental results show that the proposed method assigns more accurate missing values than previous methods. 展开更多
关键词 Electroencephalography (EEG) Missing value imputation Hidden pattern discovery expectation maximization Principal component analysis
原文传递
隐变量模型及其在贝叶斯运营模态分析的应用 被引量:2
16
作者 朱伟 李宾宾 +1 位作者 谢炎龙 陈笑宇 《振动工程学报》 EI CSCD 北大核心 2024年第9期1476-1484,共9页
贝叶斯FFT算法是运营模态分析的最新一代算法,以其准确性高、计算速度快、可有效进行不确定性度量等优点受到广泛关注。然而,现有贝叶斯FFT算法针对不同情况(稀疏模态、密集模态、多步测试等)需采用不同优化算法,且编程实现极为复杂。为... 贝叶斯FFT算法是运营模态分析的最新一代算法,以其准确性高、计算速度快、可有效进行不确定性度量等优点受到广泛关注。然而,现有贝叶斯FFT算法针对不同情况(稀疏模态、密集模态、多步测试等)需采用不同优化算法,且编程实现极为复杂。为此,本文旨在提出针对不同情况的贝叶斯FFT算法的统一框架,并实现模态参数的高效求解;视结构模态响应为隐变量,建立贝叶斯模态识别单步测试和多步测试的隐变量模型框架;针对提出的隐变量模型运用期望最大化算法实现各种情况下模态参数的统一贝叶斯推断,利用隐变量解耦模态参数优化过程,采用Louis等式间接求取似然函数的Hessian矩阵。通过两个实际工程测试案例,并与现有方法对比,验证所提方法的准确性和高效性。分析结果表明,本文所提算法与现有方法结果相同,但其推导简单、易编程,尤其对于密集模态识别问题具有明显的计算优势。本文为贝叶斯模态识别建立起统一的隐变量模型框架,在很大程度上简化原本繁琐且冗长的推导过程,提高计算效率,同时也为应用变分贝叶斯、吉布斯采样等算法求解贝叶斯模态识别问题提供了可能。 展开更多
关键词 运营模态分析 参数识别 隐变量模型 期望最大化 不确定性
在线阅读 下载PDF
驾驶疲劳对危险化学品道路运输事故风险的影响规律 被引量:3
17
作者 陈文瑛 邵海莉 张沚芊 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期644-653,共10页
近年来,随着危险化学品使用量的急剧攀升,危险化学品道路运输事故率也呈现上升的趋势,且此类事故的发生往往会导致严重后果。为研究危险化学品道路运输事故动态风险变化规律,在修正贝叶斯网络模型基础上,利用2017—2021年历史数据进行... 近年来,随着危险化学品使用量的急剧攀升,危险化学品道路运输事故率也呈现上升的趋势,且此类事故的发生往往会导致严重后果。为研究危险化学品道路运输事故动态风险变化规律,在修正贝叶斯网络模型基础上,利用2017—2021年历史数据进行机器学习,根据驾驶疲劳程度计算得到“驾驶人行为”动态节点的状态转移概率矩阵,建立基于动态贝叶斯网络(Dynamic Bayesian Network,DBN)的危险化学品道路运输动态风险预测模型并进行推理分析。研究显示:在驾驶3 h内,驾驶人“疲劳驾驶”发生概率随时间推移而增加,但增幅有所下降;在最常见情境下,随驾驶人“疲劳驾驶”概率增加,“侧翻”和“碰撞”事故类型的发生概率明显增加,进而导致“泄漏”事故后果的发生概率有所增加;驾驶人“疲劳驾驶”概率增加会导致“有伤亡事故”发生概率增加,即加重事故的严重程度;在驾驶3 h内,“侧翻”“碰撞”“泄漏”和“有伤亡事故”发生概率的变化趋势与驾驶人“疲劳驾驶”发生概率的变化趋势一致。 展开更多
关键词 安全人体学 动态贝叶斯网络 最大期望(EM)算法 危险化学品 道路运输 动态风险
在线阅读 下载PDF
基于加权高斯混合概率模型的系统谐波阻抗估计 被引量:1
18
作者 王清亮 韩悦萍 +1 位作者 陈轩 王伟峰 《电网与清洁能源》 CSCD 北大核心 2024年第9期38-46,53,共10页
针对现有方法受背景谐波随机波动影响而导致系统谐波阻抗估计误差大的问题,提出一种基于概率统计的系统谐波阻抗估计方法。采用3阶加权高斯混合分布函数建立系统谐波电压概率模型,以反映背景谐波的随机波动性。构建系统谐波阻抗的对数... 针对现有方法受背景谐波随机波动影响而导致系统谐波阻抗估计误差大的问题,提出一种基于概率统计的系统谐波阻抗估计方法。采用3阶加权高斯混合分布函数建立系统谐波电压概率模型,以反映背景谐波的随机波动性。构建系统谐波阻抗的对数似然方程,采用确定性退火算法对期望最大化方法进行改进,提高了隐变量的估计精度和迭代速度,实现对背景谐波随机性波动下系统谐波阻抗估计。采用KL散度和误差对该方法背景谐波概率模型的准确性和系统谐波阻抗的估计精度进行评价,并采用仿真实验分析和实测数据实验对该方法的估计效果进行分析,实验分析表明,该方法对系统谐波阻抗估计具有较强的稳健性和较高的准确性。 展开更多
关键词 谐波阻抗 加权高斯混合分布 确定性退火算法 期望最大化方法
在线阅读 下载PDF
基于EM-KF算法的微地震信号去噪方法
19
作者 李学贵 张帅 +2 位作者 吴钧 段含旭 王泽鹏 《吉林大学学报(信息科学版)》 CAS 2024年第2期200-209,共10页
针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximizati... 针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximization)算法获取卡尔曼滤波的参数最优解,结合卡尔曼滤波,可以有效地提升微地震信号的信噪比,同时保留有效信号。通过合成和真实数据实验结果表明,与传统的小波滤波和卡尔曼滤波相比,该方法具有更高的效率和更好的精度。 展开更多
关键词 微地震 EM算法 卡尔曼滤波 信噪比
在线阅读 下载PDF
基于稀疏贝叶斯学习的GFDM系统联合迭代信道估计与符号检测
20
作者 王莹 于永海 +1 位作者 郑毅 林彬 《电子学报》 EI CAS CSCD 北大核心 2024年第5期1496-1505,共10页
针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶... 针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶斯学习框架下,结合期望最大化算法(Expectation-Maximization,EM)和卡尔曼滤波与平滑算法实现块时变信道的最大似然估计;基于信道状态信息的估计值进行GFDM符号检测,并通过信道估计与符号检测的迭代处理逐步提高信道估计与符号检测的精度.仿真结果表明,所提算法能够获得接近完美信道状态信息条件下的误码率性能,且具有收敛速度快、对多普勒频移鲁棒性高等优点. 展开更多
关键词 广义频分复用 时变信道估计 稀疏贝叶斯学习 期望最大化 卡尔曼滤波与平滑
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部