期刊文献+
共找到2,598篇文章
< 1 2 130 >
每页显示 20 50 100
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
1
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
在线阅读 下载PDF
Intelligent modeling method for OV models in DoDAF2.0 based on knowledge graph
2
作者 ZHANG Yue JIANG Jiang +3 位作者 YANG Kewei WANG Xingliang XU Chi LI Minghao 《Journal of Systems Engineering and Electronics》 2025年第1期139-154,共16页
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi... Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method. 展开更多
关键词 system of systems(SoS)architecture operational viewpoint(OV)model meta model bidirectional long short-term memory and conditional random field(BiLSTM-CRF) model generation systems modeling language
在线阅读 下载PDF
Multilevel NAND Flash Memories with Superposition Modulation:A Non-Orthogonal Multi-User Communication Perspective
3
作者 Zhou Xuan Ma Zheng +2 位作者 Zhou Yi Tang Xiaohu Fan Pingzhi 《China Communications》 2025年第3期132-147,共16页
In this work,we propose a comprehensive theoretical framework for the multilevel NAND(NOT AND logic)flash memory,built upon the modified Student’s t distribution where the distortion of the threshold voltage caused b... In this work,we propose a comprehensive theoretical framework for the multilevel NAND(NOT AND logic)flash memory,built upon the modified Student’s t distribution where the distortion of the threshold voltage caused by the random telegraph noise,cell-to-cell interference and data retention noise are jointly considered.Based on the superposition modulation,we build a non-orthogonal multiuser communication model where a linear mapping is conducted between the verify voltages and binary antipodal symbols.Aimed at improving the storage efficiency,we propose an unequal amplitude mapping(UAM)solution by optimizing the weighting coefficients of verify voltages to intelligently adjust the width of each state.Moreover,the uniform storage efficiency region and sum storage efficiency of different labelings with various decoding schemes are discussed.Simulation results validate the effectiveness of our proposed UAM solution where an up to 20.9%storage efficiency gain can be achieved compared to the current used benchmark scheme.In addition,analytical and simulation results also demonstrate that the successive cancellation decoding outperforms other decoding schemes for all labelings. 展开更多
关键词 binary labelings flash memory modified Student’s t-based model superposition modulation unequal amplitude mapping
在线阅读 下载PDF
基于增强Bi-LSTM的船舶运动模型辨识
4
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 雷鹏 《中国舰船研究》 北大核心 2025年第1期76-84,共9页
[目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提... [目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提取。基于此,设计一维卷积神经网络(1D-CNN)提取序列的空间维度特征。然后,采用多头自注意力机制(MHSA)多角度对序列进行自适应加权处理。利用KVLCC2船舶航行数据,将所提增强Bi-LSTM模型与支持向量机(SVM)、门控循环单元(GRU)、长短期记忆神经网络(LSTM)模型的预测效果进行对比。[结果]所提增强Bi-LSTM模型在测试集中均方根误差(RMSE)、平均绝对误差(MAE)性能指标分别低于0.015和0.011,决定系数(R2)高于0.99913,预测精度显著高于SVM,GRU,LSTM模型。[结论]增强Bi-LSTM模型泛化性能优异,预测稳定性及预测精度高,有效实现了船舶的运动模型辨识。 展开更多
关键词 系统辨识 非参数化建模 一维卷积神经网络 双向长短期记忆神经网络 多头自注意力机制
在线阅读 下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
5
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus LONG SHORT-TERM memory recurrentneural network
在线阅读 下载PDF
Prediction of Precipitation during Summer Monsoon with Self-memorial Model 被引量:5
6
作者 封国林 曹鸿兴 +2 位作者 高新全 董文杰 丑纪范 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期701-709,共9页
In view of the fact that the atmospheric motion is an irreversible process, a memory function which can recall the observation data in the past is introduced, moreover, a special concept of self-memorization of the at... In view of the fact that the atmospheric motion is an irreversible process, a memory function which can recall the observation data in the past is introduced, moreover, a special concept of self-memorization of the atmospheric motion is proposed, and a so-called self-memorization equation of the atmospheric motion has been derived. Based on the self-memorization principle, a numerical model for decadal forecast is established by means of the thermodynamic equation and the precipitation equation. The verification scores of the hindcasts of the model in the period from 1 to 12 years are much higher than that of monthly weather forecasts at present. 展开更多
关键词 numerical model climatic prediction memory
在线阅读 下载PDF
A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy 被引量:6
7
作者 Chao Yu Guozheng Kang Qianhua Kan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期619-634,共16页
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic defor... A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite and detwinned martensite , as well as the phase transitions occurring between each pair of phases (, , , , and are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, , and and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model. 展开更多
关键词 NiTi SMAs Constitutive model Cyclic degeneration of shape memory effect Transformation-induced plasticity Reorientation-induced plasticity
在线阅读 下载PDF
Modeling size-dependent thermo-mechanical behaviors of shape memory polymer Bernoulli-Euler microbeam 被引量:3
8
作者 Bo ZHOU Xueyao ZHENG +1 位作者 Zetian KANG Shifeng XUE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第11期1531-1546,共16页
The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are p... The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling. 展开更多
关键词 shape memory polymer (SMP) SIZE-DEPENDENT CONSTITUTIVE equation MICROBEAM model size effect modified COUPLE stress theory (MCST)
在线阅读 下载PDF
基于Bi-LSTM网络的时变综合负荷模型参数辨识
9
作者 陈谦 冯源 +1 位作者 陈嘉雯 徐旸 《电力电子技术》 2024年第11期67-71,共5页
考虑到实际电网负荷的组成会随着系统运行方式、环境状况等因素发生变化,以及各类分布式电源的接入,负荷模型中增加了具有各种时变特性的负荷分量,对其进行参数辨识的难度日益加大。这里提出了一种基于深度学习的时变参数辨识模型,用于... 考虑到实际电网负荷的组成会随着系统运行方式、环境状况等因素发生变化,以及各类分布式电源的接入,负荷模型中增加了具有各种时变特性的负荷分量,对其进行参数辨识的难度日益加大。这里提出了一种基于深度学习的时变参数辨识模型,用于综合负荷模型时变参数的辨识。采用两个并行的双向长短期记忆(Bi-LSTM)网络,利用时变参数以及有功、无功功率和正序电压的时序特性,综合考虑它们对时变参数的影响,并在系统测量范围的情况下,辨识综合负荷模型的所有时变参数。 展开更多
关键词 负荷模型 时变参数 双向长短期记忆网络
在线阅读 下载PDF
Slope stability prediction based on a long short-term memory neural network:comparisons with convolutional neural networks,support vector machines and random forest models 被引量:6
10
作者 Faming Huang Haowen Xiong +4 位作者 Shixuan Chen Zhitao Lv Jinsong Huang Zhilu Chang Filippo Catani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期83-96,共14页
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode... The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models. 展开更多
关键词 Slope stability prediction Long short-term memory Deep learning Geo-Studio software Machine learning model
在线阅读 下载PDF
Metal magnetic memory field characterization at early fatigue damage based on modified Jiles-Atherton model 被引量:6
11
作者 徐明秀 徐敏强 +1 位作者 李建伟 邢海燕 《Journal of Central South University》 SCIE EI CAS 2012年第6期1488-1496,共9页
In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A serie... In order to propel the development of metal magnetic memory (MMM) technique in fatigue damage detection, the Jiles-Atherton model (J-A model) was modified to describe MMM mechanism in elastic stress stage. A series of rotating bending fatigue experiments were conducted to study the stress-magnetization relationship and verify the correctness of modified J-A model. In MMM detection, the magnetization of material irreversibly approaches to the local equilibrium state Mo instead of global equilibrium state M^n under cyclic stress, and the M0-a curves are loops around the Mar,-a curve. The modified J-A model is constructed by replacing M~ in J-A model with M0, and it can describe the magnetomechanical effect well at low external magnetic field. In the rotating bending fatigue experiments, the MMM field distribution in normal direction around cylinder specimen is similar to the stress distribution, and the calculation result of model coincides with experiment result after some necessary modifications. The MMM field variation with time at a certain point in fatigue process is divided into three stages with the variation of stable stress-stain hysteresis loop, and the calculation results of model can explain not only the three stages of MMM field changes, but also the different change laws when the applied magnetic field and initial magnetic field are different. The MMM field distribution in normal direction along specimen axis reflects stress concentration effect at artificial defect, and the magnetic signal fluctuates around the defect at late fatigue stage. The calculation results coincide with the initial MMM principle and can explain signal fluctuates around the defect. The modified J-A model can explain experiment results well, and it is fit for MMM field characterization. 展开更多
关键词 metal magnetic memory Jiles-Atherton model rotating bending fatigue magnetomechanical effect local equilibriumstate
在线阅读 下载PDF
Quantitative Metal Magnetic Memory Reliability Modeling for Welded Joints 被引量:6
12
作者 XING Haiyan DANG Yongbin +1 位作者 WANG Ben LENG Jiancheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期372-377,共6页
Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quanti... Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K_(vs) is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K_(vs) statistical law is investigated, which shows that K_(vs) obeys Gaussian distribution. So K_(vs) is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R_1 and verification reliability degree R_2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints. 展开更多
关键词 metal magnetic memory quantitative reliability modeling welded joints
在线阅读 下载PDF
Simple General Atmospheric Circulation and Climate Models with Memory 被引量:1
13
作者 S. PANCHEV T. SPASSOVA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第5期765-769,共5页
This article examines some general atmospheric circulation and climate models in the context of the notion of “memory”. Two kinds of memories are defined: statistical memory and deterministic memory. The former is ... This article examines some general atmospheric circulation and climate models in the context of the notion of “memory”. Two kinds of memories are defined: statistical memory and deterministic memory. The former is defined through the autocorrelation characteristic of the process if it is random (chaotic), while for the latter, a special memory function is introduced. Three of the numerous existing models are selected as examples. For each of the models, asymptotic (at t →∞) expressions are derived. In this way, the transients are filtered out and that which remains concerns the final behaviour of the models. 展开更多
关键词 atmospheric circulation CLIMATE memory model
在线阅读 下载PDF
Thermoviscoelastic Modeling Approach for Predicting the Recovery Behaviors of Thermally Activated Amorphous Shape Memory Polymers 被引量:1
14
作者 GU Jianping FANG Changqing +1 位作者 SUN Huiyu ZHANG Xiaopeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第5期798-807,共10页
A thermoviscoelastic modeling approach is developed to predict the recovery behaviors of the thermally activated amorphous shape memory polymers(SMPs)based on the generalized finite deformation viscoelasticity theory.... A thermoviscoelastic modeling approach is developed to predict the recovery behaviors of the thermally activated amorphous shape memory polymers(SMPs)based on the generalized finite deformation viscoelasticity theory.In this paper,a series of moduli and relaxation times of the generalized Maxwell model is estimated from the stress relaxation master curve by using the nonlinear regression(NLREG)method.Assuming that the amorphous SMPs are approximately incompressible isotropic elastomers in the rubbery state,the hyperelastic response of the materials is well modeled with a hyperelastic model in Ogden form.In addition,the Williams-Landel-Ferry(WLF)equation is used to describe the horizontal shift factor obtained with time-temperature superposition principle(TTSP).The finite element simulations show good agreement with the experimental thermomechanical behaviors.Moreover,the possibility of developing a temperature-responsive intravascular stent with the SMP studied here is investigated in terms of its thermomechanical property.Therefore,it can be concluded that the model has good prediction capabilities for the recovery behaviors of amorphous SMPs. 展开更多
关键词 shape memory polymers(SMPs) thermoviscoelastic modeling approach finite deformation RECOVERY behavior
在线阅读 下载PDF
Hybrid control based on inverse Prandtl-Ishlinskii model for magnetic shape memory alloy actuator 被引量:2
15
作者 周淼磊 高巍 田彦涛 《Journal of Central South University》 SCIE EI CAS 2013年第5期1214-1220,共7页
The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memor... The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memory alloy actuator. Based on the proposed Prandtl-Ishlinskii model, the inverse Prandtl-Ishlinskii model was established as a feedforward controller to compensate the hysteresis of the magnetic shape memory alloy actuator. For further improving of the positioning precision of the magnetic shape memory alloy actuator, a hybrid control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with inverse Prandtl-Ishlinskii model and a feedback loop with neural network controller. To validate the validity of the proposed control method, a series of simulations and experiments were researched. The simulation and experimental results demonstrate that the maximum error rate of open loop controller based on inverse PI model is 1.72%, the maximum error rate of the hybrid controller based on inverse PI model is 1.37%. 展开更多
关键词 magnetic shape memory alloy HYSTERESIS hybrid control Prandtl-Ishlinskii model neural network
在线阅读 下载PDF
Three-dimensional constitutive model for magneto-mechanical deformation of NiMnGa ferromagnetic shape memory alloy single crystals 被引量:1
16
作者 Chao Yu Guozheng Kang +1 位作者 Di Song Xi Xie 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期563-588,共26页
Existing experimental results have shown that four types of physical mechanisms, namely, martensite transformation, martensite reorientation, magnetic domain wall motion and magnetization vector rotation, can be activ... Existing experimental results have shown that four types of physical mechanisms, namely, martensite transformation, martensite reorientation, magnetic domain wall motion and magnetization vector rotation, can be activated during the magneto-mechanical deformation of NiMnGa ferromagnetic shape memory alloy (FSMA) single crystals. In this work, based on irreversible thermodynamics, a three-dimensional (3D) single crystal constitutive model is constructed by considering the aforementioned four mechanisms simultaneously. Three types of internal variables, i.e., the volume fraction of each martensite variant, the volume fraction of magnetic domain in each variant and the deviation angle between the magnetization vector, and easy axis are introduced to characterize the magneto-mechanical state of the single crystals. The thermodynamic driving force of each mechanism and the thermodynamic constraints on the constitutive model are obtained from Clausius's dissipative inequality and constructed Gibbs free energy. Then, thermodynamically consistent kinetic equations for the four mechanisms are proposed, respectively. Finally, the ability of the proposed model to describe the magneto-mechanical deformation of NiMnGa FSMA single crystals is verified by comparing the predictions with corresponding experimental results. It is shown that the proposed model can quantitatively capture the main experimental phenomena. Further, the proposed model is used to predict the deformations of the single crystals under the non-proportional mechanical loading conditions. 展开更多
关键词 FERROMAGNETIC shape memory alloys Single crystals Magneto-mechanical deformation MARTENSITE transformation MARTENSITE REORIENTATION CONSTITUTIVE model
在线阅读 下载PDF
Pruned Volterra Models with Memory Effects for Nonlinear Power Amplifiers 被引量:1
17
作者 Pengpeng Li Qingfang Zhang +2 位作者 Ping Wang Zhongshan Xie Bing Liu 《Communications and Network》 2013年第3期570-572,共3页
In this letter, a novel model is proposed for modeling the nonlinearity and memory effects of power amplifiers. The classical Volterra model is modified through a function of the sum of nonlinearity order with sum of ... In this letter, a novel model is proposed for modeling the nonlinearity and memory effects of power amplifiers. The classical Volterra model is modified through a function of the sum of nonlinearity order with sum of memory length. The parameters of this model can be extracted in digital domain since the model is analyzed based on the envelope signals. The model we proposed enables a substantial reduction in the number of coefficients involved, and with excellent accuracy. 展开更多
关键词 VOLTERRA SERIES Power AMPLIFIER (PA) BEHAVIORAL model memory Effect
在线阅读 下载PDF
Understanding long-term memory in global mean temperature:An attribution study based on model simulations 被引量:1
18
作者 QIU Min YUAN Naiming YUAN Shujie 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第5期485-492,共8页
Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by st... Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by studying model simulations under different scenarios.The global mean temperatures from pre-industrial control runs(pi Control),historical(all forcings)simulations,natural forcing only simulations(Historical Nat),greenhouse gas forcing only simulations(Historical GHG),etc.,are analyzed using the detrended fluctuation analysis.The authors find that the LTM already exists in the pi Control simulations,indicating the important roles of internal natural variability in producing the LTM.By comparing the results among different scenarios,the LTM from the piControl runs is further found to be strengthened by adding natural forcings such as the volcanic forcing and the solar forcing.Accordingly,the observed LTM in the climate system is suggested to be mainly controlled by both the‘internal’natural variability and the‘external’natural forcings.The anthropogenic forcings,however,may weaken the LTM.In the projections from RCP2.6 to RCP8.5,a weakening trend of the LTM strength is found.In view of the close relations between the climate memory and the climate predictability,a reduced predictability may be expected in a warming climate. 展开更多
关键词 Long-term memory model simulations ATTRIBUTION detrended fluctuation analysis
在线阅读 下载PDF
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling 被引量:2
19
作者 金秋雪 刘波 +8 位作者 刘燕 王维维 汪恒 许震 高丹 王青 夏洋洋 宋志棠 封松林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期128-131,共4页
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ... An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current. 展开更多
关键词 PCRAM cell RESET Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access memory with Blade-Type Like Phase Change Layer by Finite Element modeling of by in with
在线阅读 下载PDF
Effects of ginsenoside of stem and leaf combined with choline on learning and memory ability of rat models with Alzheimer diseases 被引量:1
20
作者 Xiaomin Zhao Xianglin Xie +3 位作者 Zuoli Xia Yunsheng Gao Yuyun Zhu Hongxia Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期331-334,共4页
BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve function... BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve functions of central adrenergic nerve; moreover, 5-serotonergic nerve and the combination with choline can produce synergistic effect and enhance learning and memory ability so as to improve learning and memory disorder of patients with Alzheimer disease (AD). OBJECTIVE : To observe the effects of GSL combining with choline on learning and memory of AD model rats DESIGN : Randomized grouping design and controlled animal study SETIING : Department of Pharmacology, Taishan Medical College MATERIALS : The experiment was carried out in the Pharmacological Department of Medical College of Jilin University from October 1996 to January 1997. Forty healthy male Wistar rats of clean grade were randomly divided into 5 groups, including sham-injury group, model group, GSL group, choline group and combination group, with 8 rats in each group. Main medications: GSL with the volume more than 92.8% was provided by Department of Chemistry, Norman Bethune Medical College of Jilin University. Panaxatriol, the main component, was detected with thin layer scanning technique and regarded as the index of GSL quality [(55±1)%, CV= 2%, n = 5]. Choline was provided by the Third Shanghai Laboratory Factory. METHODS : 150 nmol quinolinic acid was used to damage bilateral Meynert basal nuclei of adult rats so as to establish AD models. Rats in GSL, choline and combination groups were intragastric administrated with 400 mg/kg GSL, 200 mg/kg choline (20 mL/kg), and both respectively last for 17 days starting from two days before operation. Rats in sham-injury group and model group were perfused with the same volume of distilled water once in each morning for the same days. (1) Passive avoidance step-down test: Five minutes later, rats jumped up safe platform when they were shocked with 36 V alternating current. If rats jumped down from the platform and the feet touched railings, the response was wrong. Numbers of wrong response were recorded within 3 minutes, and then the test was redone after 24 hours. (2) Morris water-maze spatial localization task: Swimming from jumping-off to platform directly was regarded as right response. Additionally, 4 successively right responses were regarded as the standard. Each rat was trained 10 times a day with 120 s per time for 3 successive days. The interval was 30 s. Three days later, numbers of right response were recorded. The training times were increased to 30 for unlearned rats. (3) Measurement of activity of choline acetylase in cerebral cortex: Rats were sacrificed at 17 days after operation to obtain cerebral cortex to measure activity of choline acetylase with radiochemistry technique. (4) Synergistic effect: It was expressed as Q value: Q value = factual incorporative effect/anticipant incorporative effect; Q ≥ 1 was regarded as synergistic effect. Anticipant incorporative effect = (EA+EB-EA·EB), EA and EB were single timing effect, respectively in GSL group and choline group. E(step-down test and Morris water maze test) = (x in model group - factual value in medicine groups)/x in model group; E (activity of choline acetylase) = (factual value in medicine groups -xin model group)/xin model group. MAIN OUTCOME MEASURES : (1) Passive avoidance step-down test and Morris water-maze spatial localization task in the study of learning and memory; (2) activity of choline acetylase. RESULTS : All 40 rats were involved in the final analysis. (1) Passive avoidance response: At learning phase on first day and retesting phase on the next day, numbers of wrong responses within 3 minutes were more in model group than sham operation group, and there was significant difference [(5.88±1.46), (2.25±0.87) times; (2.63±1.06), (0.50±0.53) times; P 〈 0.01]; numbers of wrong responses within 3 minutes were less in combination group than model group, and there was significant difference [learning phase: (1.12±0.83), (5.88±1.46) times; retesting phase: (0.38±0.74), (2.63±1.06)times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and 1.59, respectively and it showed synergistic effect. Spatial localization task: Training times were more in model group than sham operation group, and there was significant difference [(2.9±2.5), (12.6±3.5) times; P 〈 0.01]. Training times were less in combination group than model group, and there was significant difference [(11.8±2.4), (27.9±2.5) times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and it showed synergistic effect. (3) Activity of choline acetylase: Activity was lower in model group than sham operation group, and there was significant difference [(30.56±8.33), (61.11 ±8.33) nkat/g; P 〈 0.01]. Activity was higher in combination group than model group and there was significant difference [(50.00±8.33), (30.56±8.33) nkat/g, P 〈 0.01];moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.5 and it showed synergistic effect. CONCLUSZON: GSL in combination with choline can synergically improve the disorder of learning and memory of AD model rats. Its mechanism may be involved in enhancing the function of central cholinergic system. 展开更多
关键词 stem Effects of ginsenoside of stem and leaf combined with choline on learning and memory ability of rat models with Alzheimer diseases
在线阅读 下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部