This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansio...In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.展开更多
In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary...In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary value problems, reduce the discontinuous boundary value problems to a variation problem, and then find the numerical solutions of above problem by the finite element method. Finally authors give some error-estimates of the foregoing numerical solutions.展开更多
The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the o...The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.展开更多
In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by me...In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.展开更多
We study the following modified transitional Korteweg-de Vries equation ut+f(t)upux+uxxx=0, (x,t)∈R+×R+, (p≥2is an even integer) with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t...We study the following modified transitional Korteweg-de Vries equation ut+f(t)upux+uxxx=0, (x,t)∈R+×R+, (p≥2is an even integer) with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either (i) f(t)≤0, f′(t)≥0or (ii) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.展开更多
In this paper.the following ined boundary value problem for second-order system of differential equations of the elliptic type will be discussed to find the function u and v such that they satisfy:The solution of this...In this paper.the following ined boundary value problem for second-order system of differential equations of the elliptic type will be discussed to find the function u and v such that they satisfy:The solution of this problem is found by means of the theory of generalized analutic function and the integral equation method for solving boundary value problems.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order in D (0.1) and the boundary condition,(0.2) in a multiply connected infinite domain D with the bo...This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order in D (0.1) and the boundary condition,(0.2) in a multiply connected infinite domain D with the boundary T. The above boundary value problem is called Problem G. Problem G extends the work [8] in which the equation (0.1) includes a nonlinear lower term and the boundary condition (0.2) is more general. If the complex equation (0.1) and the boundary condition (0.2) meet certain assumptions, some solvability results for Problem G can be obtained. By using reduction to absurdity, we first discuss a priori estimates of solutions and solvability for a modified problem. Then we present results on solvability of Problem G.展开更多
In this paper,a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities.The uniformly valid a...In this paper,a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities.The uniformly valid asymptotic expansion of solution is obtained.展开更多
A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value prob...A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational...The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, ...A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.展开更多
We investigate a class of boundary value problems for nonlinear impulsive fractional differential equations with a parameter.By the deduction of Altman’s theorem and Krasno-selskii’s fixed point theorem,the existenc...We investigate a class of boundary value problems for nonlinear impulsive fractional differential equations with a parameter.By the deduction of Altman’s theorem and Krasno-selskii’s fixed point theorem,the existence of this problem is proved.Examples are given to illustrate the effectiveness of our results.展开更多
A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of genera...A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of generalized nonlinear Riemann_Hilbert BVP. And then some singular integral operators are introduced to establish the equivalent nonlinear singular integral equations. The solvability is proved under some suitable hypotheses by means of the properties of singular integral operators and the function theoretic methods.展开更多
The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
文摘In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.
文摘In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary value problems, reduce the discontinuous boundary value problems to a variation problem, and then find the numerical solutions of above problem by the finite element method. Finally authors give some error-estimates of the foregoing numerical solutions.
文摘The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.
文摘In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.
文摘We study the following modified transitional Korteweg-de Vries equation ut+f(t)upux+uxxx=0, (x,t)∈R+×R+, (p≥2is an even integer) with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either (i) f(t)≤0, f′(t)≥0or (ii) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.
文摘In this paper.the following ined boundary value problem for second-order system of differential equations of the elliptic type will be discussed to find the function u and v such that they satisfy:The solution of this problem is found by means of the theory of generalized analutic function and the integral equation method for solving boundary value problems.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order in D (0.1) and the boundary condition,(0.2) in a multiply connected infinite domain D with the boundary T. The above boundary value problem is called Problem G. Problem G extends the work [8] in which the equation (0.1) includes a nonlinear lower term and the boundary condition (0.2) is more general. If the complex equation (0.1) and the boundary condition (0.2) meet certain assumptions, some solvability results for Problem G can be obtained. By using reduction to absurdity, we first discuss a priori estimates of solutions and solvability for a modified problem. Then we present results on solvability of Problem G.
文摘In this paper,a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities.The uniformly valid asymptotic expansion of solution is obtained.
文摘A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
基金Supported by National Natural Science Foundation of China (11071198 11101347)+2 种基金Postdoctor Foundation of China (2012M510363)the Key Project in Science and Technology Research Plan of the Education Department of Hubei Province (D20112605 D20122501)
文摘The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
文摘A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
基金supported by Shandong Provincial Natural Science Foundation of China(ZR2020MA016)supported by the National Natural Science Foundation of China(62073153).
文摘We investigate a class of boundary value problems for nonlinear impulsive fractional differential equations with a parameter.By the deduction of Altman’s theorem and Krasno-selskii’s fixed point theorem,the existence of this problem is proved.Examples are given to illustrate the effectiveness of our results.
文摘A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of generalized nonlinear Riemann_Hilbert BVP. And then some singular integral operators are introduced to establish the equivalent nonlinear singular integral equations. The solvability is proved under some suitable hypotheses by means of the properties of singular integral operators and the function theoretic methods.
文摘The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.