期刊文献+
共找到7,176篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive layer splitting forwireless large language model inference in edge computing:amodel-based reinforcement learning approach
1
作者 Yuxuan CHEN Rongpeng LI +2 位作者 Xiaoxue YU Zhifeng ZHAO Honggang ZHANG 《Frontiers of Information Technology & Electronic Engineering》 2025年第2期278-292,共15页
Optimizing the deployment of large language models(LLMs)in edge computing environments is critical for enhancing privacy and computational efficiency.In the path toward efficient wireless LLM inference in edge computi... Optimizing the deployment of large language models(LLMs)in edge computing environments is critical for enhancing privacy and computational efficiency.In the path toward efficient wireless LLM inference in edge computing,this study comprehensively analyzes the impact of different splitting points in mainstream open-source LLMs.Accordingly,this study introduces a framework taking inspiration from model-based reinforcement learning to determine the optimal splitting point across the edge and user equipment.By incorporating a reward surrogate model,our approach significantly reduces the computational cost of frequent performance evaluations.Extensive simulations demonstrate that this method effectively balances inference performance and computational load under varying network conditions,providing a robust solution for LLM deployment in decentralized settings. 展开更多
关键词 Large language models(LLMs) Edge computing model-based reinforcement learning(MBRL) Split inference Transformer
原文传递
Model gradient: unified model and policy learning in model-based reinforcement learning
2
作者 Chengxing JIA Fuxiang ZHANG +3 位作者 Tian XU Jing-Cheng PANG Zongzhang ZHANG Yang YU 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第4期117-128,共12页
Model-based reinforcement learning is a promising direction to improve the sample efficiency of reinforcement learning with learning a model of the environment.Previous model learning methods aim at fitting the transi... Model-based reinforcement learning is a promising direction to improve the sample efficiency of reinforcement learning with learning a model of the environment.Previous model learning methods aim at fitting the transition data,and commonly employ a supervised learning approach to minimize the distance between the predicted state and the real state.The supervised model learning methods,however,diverge from the ultimate goal of model learning,i.e.,optimizing the learned-in-the-model policy.In this work,we investigate how model learning and policy learning can share the same objective of maximizing the expected return in the real environment.We find model learning towards this objective can result in a target of enhancing the similarity between the gradient on generated data and the gradient on the real data.We thus derive the gradient of the model from this target and propose the Model Gradient algorithm(MG)to integrate this novel model learning approach with policy-gradient-based policy optimization.We conduct experiments on multiple locomotion control tasks and find that MG can not only achieve high sample efficiency but also lead to better convergence performance compared to traditional model-based reinforcement learning approaches. 展开更多
关键词 reinforcement learning model-based reinforcement learning Markov decision process
原文传递
Optimization of Intelligent Education Systems Based on Reinforcement Learning
3
作者 Sophia LI 《Artificial Intelligence Education Studies》 2025年第1期53-69,共17页
This paper explores how reinforcement learning(RL)can improve intelligent education systems.RL helps make learning personal,flexible,and efficient by choosing actions based on student needs and rewards like better sco... This paper explores how reinforcement learning(RL)can improve intelligent education systems.RL helps make learning personal,flexible,and efficient by choosing actions based on student needs and rewards like better scores or engagement.We study its use in custom learning paths,smart testing,and teacher support,showing how it beats old methods that don’t adapt.The paper also suggests future ideas—like better RL tools,teamwork learning,and mixing RL with big language models—while noting fairness challenges.Using pretend data with 1000 students,we test RL’s power to plan learning step by step.Results show RL can lift learning by 2025%in areas like tutoring and class focus.This work gives a clear plan for using RL to make education smarter and fairer,pointing to a bright future for adaptive learning. 展开更多
关键词 reinforcement learning Intelligent Education Personalized learning Adaptive Assessment Teacher Support
在线阅读 下载PDF
Reinforcement Learning in Mechatronic Systems: A Case Study on DC Motor Control
4
作者 Alexander Nüßgen Alexander Lerch +5 位作者 René Degen Marcus Irmer Martin de Fries Fabian Richter Cecilia Boström Margot Ruschitzka 《Circuits and Systems》 2025年第1期1-24,共24页
The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines ... The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems. 展开更多
关键词 Artificial Intelligence in Product Development Mechatronic Systems reinforcement learning for Control System Integration and Verification Adaptive Optimization Processes Knowledge-Based Engineering
在线阅读 下载PDF
Adaptive multi-agent reinforcement learning for dynamic pricing and distributed energy management in virtual power plant networks
5
作者 Jian-Dong Yao Wen-Bin Hao +3 位作者 Zhi-Gao Meng Bo Xie Jian-Hua Chen Jia-Qi Wei 《Journal of Electronic Science and Technology》 2025年第1期35-59,共25页
This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards grea... This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation. 展开更多
关键词 Distributed energy management Dynamic pricing Multi-agent reinforcement learning Renewable energy integration Virtual power plants
在线阅读 下载PDF
Multi-QoS routing algorithm based on reinforcement learning for LEO satellite networks
6
作者 ZHANG Yifan DONG Tao +1 位作者 LIU Zhihui JIN Shichao 《Journal of Systems Engineering and Electronics》 2025年第1期37-47,共11页
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa... Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link. 展开更多
关键词 low Earth orbit(LEO)satellite network reinforcement learning multi-quality of service(QoS) routing algorithm
在线阅读 下载PDF
Model-based reinforcement learning for router port queue configurations
7
作者 Ajay Kattepur Sushanth David Swarup Kumar Mohalik 《Intelligent and Converged Networks》 2021年第3期177-197,共21页
Fifth-generation(5G)systems have brought about new challenges toward ensuring Quality of Service(QoS)in differentiated services.This includes low latency applications,scalable machine-to-machine communication,and enha... Fifth-generation(5G)systems have brought about new challenges toward ensuring Quality of Service(QoS)in differentiated services.This includes low latency applications,scalable machine-to-machine communication,and enhanced mobile broadband connectivity.In order to satisfy these requirements,the concept of network slicing has been introduced to generate slices of the network with specific characteristics.In order to meet the requirements of network slices,routers and switches must be effectively configured to provide priority queue provisioning,resource contention management and adaptation.Configuring routers from vendors,such as Ericsson,Cisco,and Juniper,have traditionally been an expert-driven process with static rules for individual flows,which are prone to sub optimal configurations with varying traffic conditions.In this paper,we model the internal ingress and egress queues within routers via a queuing model.The effects of changing queue configuration with respect to priority,weights,flow limits,and packet drops are studied in detail.This is used to train a model-based Reinforcement Learning(RL)algorithm to generate optimal policies for flow prioritization,fairness,and congestion control.The efficacy of the RL policy output is demonstrated over scenarios involving ingress queue traffic policing,egress queue traffic shaping,and one-hop router coordinated traffic conditioning.This is evaluated over a real application use case,wherein a statically configured router proved sub optimal toward desired QoS requirements.Such automated configuration of routers and switches will be critical for multiple 5G deployments with varying flow requirements and traffic patterns. 展开更多
关键词 router port queues model-based reinforcement learning(RL) network slicing
原文传递
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:7
8
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
在线阅读 下载PDF
UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach 被引量:1
9
作者 Jiawen Kang Junlong Chen +6 位作者 Minrui Xu Zehui Xiong Yutao Jiao Luchao Han Dusit Niyato Yongju Tong Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期430-445,共16页
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers... Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses. 展开更多
关键词 AVATAR blockchain metaverses multi-agent deep reinforcement learning transformer UAVS
在线阅读 下载PDF
Cognitive interference decision method for air defense missile fuze based on reinforcement learning 被引量:1
10
作者 Dingkun Huang Xiaopeng Yan +2 位作者 Jian Dai Xinwei Wang Yangtian Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期393-404,共12页
To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea... To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference. 展开更多
关键词 Cognitive radio Interference decision Radio fuze reinforcement learning Interference strategy optimization
在线阅读 下载PDF
Quafu-RL:The cloud quantum computers based quantum reinforcement learning 被引量:1
11
作者 靳羽欣 许宏泽 +29 位作者 王正安 庄伟峰 黄凯旋 时运豪 马卫国 李天铭 陈驰通 许凯 冯玉龙 刘培 陈墨 李尚书 杨智鹏 钱辰 马运恒 肖骁 钱鹏 顾炎武 柴绪丹 普亚南 张翼鹏 魏世杰 曾进峰 李行 龙桂鲁 金贻荣 于海峰 范桁 刘东 胡孟军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期29-34,共6页
With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate... With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform. 展开更多
关键词 quantum cloud platform quantum reinforcement learning evolutionary quantum architecture search
在线阅读 下载PDF
Energy-Efficient Traffic Offloading for RSMA-Based Hybrid Satellite Terrestrial Networks with Deep Reinforcement Learning 被引量:1
12
作者 Qingmiao Zhang Lidong Zhu +1 位作者 Yanyan Chen Shan Jiang 《China Communications》 SCIE CSCD 2024年第2期49-58,共10页
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p... As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm. 展开更多
关键词 deep reinforcement learning energy efficiency hybrid satellite terrestrial networks rate splitting multiple access traffic offloading
在线阅读 下载PDF
Dynamic Economic Scheduling with Self-Adaptive Uncertainty in Distribution Network Based on Deep Reinforcement Learning 被引量:1
13
作者 Guanfu Wang Yudie Sun +5 位作者 Jinling Li Yu Jiang Chunhui Li Huanan Yu He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1671-1695,共25页
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to... Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem. 展开更多
关键词 SELF-ADAPTIVE the uncertainty of sources and load deep reinforcement learning dynamic economic scheduling
在线阅读 下载PDF
Continual Reinforcement Learning for Intelligent Agricultural Management under Climate Changes
14
作者 Zhaoan Wang Kishlay Jha Shaoping Xiao 《Computers, Materials & Continua》 SCIE EI 2024年第10期1319-1336,共18页
Climate change poses significant challenges to agricultural management,particularly in adapting to extreme weather conditions that impact agricultural production.Existing works with traditional Reinforcement Learning(... Climate change poses significant challenges to agricultural management,particularly in adapting to extreme weather conditions that impact agricultural production.Existing works with traditional Reinforcement Learning(RL)methods often falter under such extreme conditions.To address this challenge,our study introduces a novel approach by integrating Continual Learning(CL)with RL to form Continual Reinforcement Learning(CRL),enhancing the adaptability of agricultural management strategies.Leveraging the Gym-DSSAT simulation environment,our research enables RL agents to learn optimal fertilization strategies based on variable weather conditions.By incorporating CL algorithms,such as Elastic Weight Consolidation(EWC),with established RL techniques like Deep Q-Networks(DQN),we developed a framework in which agents can learn and retain knowledge across diverse weather scenarios.The CRL approach was tested under climate variability to assess the robustness and adaptability of the induced policies,particularly under extreme weather events like severe droughts.Our results showed that continually learned policies exhibited superior adaptability and performance compared to optimal policies learned through the conventional RL methods,especially in challenging conditions of reduced rainfall and increased temperatures.This pioneering work,which combines CL with RL to generate adaptive policies for agricultural management,is expected to make significant advancements in precision agriculture in the era of climate change. 展开更多
关键词 Continual learning reinforcement learning agricultural management climate variability
在线阅读 下载PDF
Toward Trustworthy Decision-Making for Autonomous Vehicles:A Robust Reinforcement Learning Approach with Safety Guarantees
15
作者 Xiangkun He Wenhui Huang Chen Lv 《Engineering》 SCIE EI CAS CSCD 2024年第2期77-89,共13页
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present... While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies. 展开更多
关键词 Autonomous vehicle DECISION-MAKING reinforcement learning Adversarial attack Safety guarantee
在线阅读 下载PDF
Bridge Bidding via Deep Reinforcement Learning and Belief Monte Carlo Search
16
作者 Zizhang Qiu Shouguang Wang +1 位作者 Dan You MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2111-2122,共12页
Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange... Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange with partners and interference with communication of opponents.In this work,we introduce a Bridge bidding agent that combines supervised learning,deep reinforcement learning via self-play,and a test-time search approach.Our experiments demonstrate that our agent outperforms WBridge5,a highly regarded computer Bridge software that has won multiple world championships,by a performance of 0.98 IMPs(international match points)per deal over 10000 deals,with a much cost-effective approach.The performance significantly surpasses previous state-of-the-art(0.85 IMPs per deal).Note 0.1 IMPs per deal is a significant improvement in Bridge bidding. 展开更多
关键词 Contract Bridge reinforcement learning SEARCH
在线阅读 下载PDF
Distributed Graph Database Load Balancing Method Based on Deep Reinforcement Learning
17
作者 Shuming Sha Naiwang Guo +1 位作者 Wang Luo Yong Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5105-5124,共20页
This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependenci... This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependencies.It necessitates the distribution of various computational tasks to appropriate computing node resources in accor-dance with task dependencies to ensure the smooth completion of the entire workflow.Workflow scheduling must consider an array of factors,including task dependencies,availability of computational resources,and the schedulability of tasks.Therefore,this paper delves into the distributed graph database workflow task scheduling problem and proposes a workflow scheduling methodology based on deep reinforcement learning(DRL).The method optimizes the maximum completion time(makespan)and response time of workflow tasks,aiming to enhance the responsiveness of workflow tasks while ensuring the minimization of the makespan.The experimental results indicate that the Q-learning Deep Reinforcement Learning(Q-DRL)algorithm markedly diminishes the makespan and refines the average response time within distributed graph database environments.In quantifying makespan,Q-DRL achieves mean reductions of 12.4%and 11.9%over established First-fit and Random scheduling strategies,respectively.Additionally,Q-DRL surpasses the performance of both DRL-Cloud and Improved Deep Q-learning Network(IDQN)algorithms,with improvements standing at 4.4%and 2.6%,respectively.With reference to average response time,the Q-DRL approach exhibits a significantly enhanced performance in the scheduling of workflow tasks,decreasing the average by 2.27%and 4.71%when compared to IDQN and DRL-Cloud,respectively.The Q-DRL algorithm also demonstrates a notable increase in the efficiency of system resource utilization,reducing the average idle rate by 5.02%and 9.30%in comparison to IDQN and DRL-Cloud,respectively.These findings support the assertion that Q-DRL not only upholds a lower average idle rate but also effectively curtails the average response time,thereby substantially improving processing efficiency and optimizing resource utilization within distributed graph database systems. 展开更多
关键词 reinforcement learning WORKFLOW task scheduling load balancing
在线阅读 下载PDF
QoS Routing Optimization Based on Deep Reinforcement Learning in SDN
18
作者 Yu Song Xusheng Qian +2 位作者 Nan Zhang Wei Wang Ao Xiong 《Computers, Materials & Continua》 SCIE EI 2024年第5期3007-3021,共15页
To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQu... To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods. 展开更多
关键词 Deep reinforcement learning SDN route optimization QOS
在线阅读 下载PDF
Combining reinforcement learning with mathematical programming:An approach for optimal design of heat exchanger networks
19
作者 Hui Tan Xiaodong Hong +4 位作者 Zuwei Liao Jingyuan Sun Yao Yang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期63-71,共9页
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea... Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales. 展开更多
关键词 Heat exchanger network reinforcement learning Mathematical programming Process design
在线阅读 下载PDF
Reinforcement learning based edge computing in B5G
20
作者 Jiachen Yang Yiwen Sun +4 位作者 Yutian Lei Zhuo Zhang Yang Li Yongjun Bao Zhihan Lv 《Digital Communications and Networks》 SCIE CSCD 2024年第1期1-6,共6页
The development of communication technology will promote the application of Internet of Things,and Beyond 5G will become a new technology promoter.At the same time,Beyond 5G will become one of the important supports f... The development of communication technology will promote the application of Internet of Things,and Beyond 5G will become a new technology promoter.At the same time,Beyond 5G will become one of the important supports for the development of edge computing technology.This paper proposes a communication task allocation algorithm based on deep reinforcement learning for vehicle-to-pedestrian communication scenarios in edge computing.Through trial and error learning of agent,the optimal spectrum and power can be determined for transmission without global information,so as to balance the communication between vehicle-to-pedestrian and vehicle-to-infrastructure.The results show that the agent can effectively improve vehicle-to-infrastructure communication rate as well as meeting the delay constraints on the vehicle-to-pedestrian link. 展开更多
关键词 reinforcement learning Edge computing Beyond 5G Vehicle-to-pedestrian
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部