Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in v...Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.展开更多
Phenology shifts influence regional climate by altering energy,and water fluxes through biophysical processes.However,a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to ...Phenology shifts influence regional climate by altering energy,and water fluxes through biophysical processes.However,a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to re gional climate remains elusive.Using long-term remote sensing observations and Weather Research and Fore casting(WRF)model simulations,we investigated vegetation phenology changes from 2003 to 2020 and quan tified their biophysical controls on the regional climate in Northeast China.Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests,while advanced green-up and delayed dormancy extended the growing season in croplands.This prolonged presence and increased maximum green cover in tensified climate-vegetation interactions,resulting in more significant surface cooling in croplands compared to forests.Surface cooling from forest phenology changes was prominent during May’s green-up(-0.53±0.07°C),while crop phenology changes induced cooling throughout the growing season,particularly in June(-0.47±0.15°C),July(-0.48±0.11°C),and September(-0.28±0.09°C).Furthermore,we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model,with aero dynamic resistance emerging as the dominant factor.Crucially,our findings underscored that the land surface temperature(LST)sensitivity,exhibited substantially higher values in croplands rather than temperate forests.These strong sensitivities,coupled with the projected continuation of phenology shifts,portend further growing season cooling in croplands.These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature,emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.展开更多
In the realm of virtual reality(VR),haptic feedback is integral to enhance the immersive experience;yet,existing wearable devices predominantly rely on skin contact feedback,lacking options for compact and non-contact...In the realm of virtual reality(VR),haptic feedback is integral to enhance the immersive experience;yet,existing wearable devices predominantly rely on skin contact feedback,lacking options for compact and non-contact breeze-sense feedback.Herein,we propose a compact and non-contact working model piezoelectret actuator for providing a gentle and safe breeze sensation.This easy-fabricated and flexible breeze-sense generator with thickness around 1 mm generates air flow pressure up to~163 Pa,which is significantly sensed by human skin.In a typical demonstration,the breeze-sense generators array showcases its versatility by employing multiple coded modes for non-contact information transmitting.The thin thinness and good flexibility facilitate seamless integration with wearable VR setups,and the wearable arrays empower volunteers to precisely perceive the continuous and sudden breeze senses in the virtual environments.This work is expected to inspire developing new haptic feedback devices that play pivotal roles in human-machine interfaces for VR applications.展开更多
Graphene platelets(GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.Further bonding piezoelectric actuator and sensor layers on ...Graphene platelets(GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control,greatly expanding their applications in the aerospace industry.For the first time,this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surfacebonded piezoelectric layers.The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors.The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied.The Newmark-βmethod combined with Newton's iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads,impact loads,and moving loads.Additionally,special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam.展开更多
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th...The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
This paper is based on the background of the 2nd Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AIWork Group,where the framework of the eigenvector...This paper is based on the background of the 2nd Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AIWork Group,where the framework of the eigenvector-based channel state information(CSI)feedback problem is firstly provided.Then a basic Transformer backbone for CSI feedback referred to EVCsiNet-T is proposed.Moreover,a series of potential enhancements for deep learning based(DL-based)CSI feedback including i)data augmentation,ii)loss function design,iii)training strategy,and iv)model ensemble are introduced.The experimental results involving the comparison between EVCsiNet-T and traditional codebook methods over different channels are further provided,which show the advanced performance and a promising prospect of Transformer on DL-based CSI feedback problem.展开更多
A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EA...A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EAST tokamak.The feedback control system includes four main parts:the impurity powder dropper(IPD),a diagnostic system measuring fuel recycling level represented by D_(α)emission,a plasma control system(PCS)implementing the Proportional Integral Derivative(PID)algorithm,and a signal converter connecting the IPD and PCS.Based on this control system,both active control and feedback control experiments have recently been performed on EAST with a full metal wall.The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases.In the feedback control experiments,it is also observed that the D_(α)emission is reduced to the level below the target D_(α)value by adjusting boron injection flow rate,indicating successful implementation of the fuel recycling feedback control on EAST.This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices.展开更多
Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used ...Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.展开更多
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,...The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.展开更多
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the ci...Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the circPDIA4/miR-9-5p/SP1 axis on development of CRC has not been studied.Methods:Western blot,immunohistochemistry,and reverse transcription-quantitative polymerase chain reaction assays were used to analyze gene expression.The CCK-8 assay was used to assess cell growth.The Transwell assay was used to detect invasion and migration of cells.The luciferase reporter and RNA immunoprecipitation tests were used to determine if miR-9-5p and circPDIA4(or SP1)bind to one another.An in vivo assay was used to measure tumor growth.Results:It was shown that circPDIA4 expression was greater in CRC cell lines and tissues than healthy cell lines and tissues.CircPDIA4 knockdown prevented the invasion,migration,and proliferation of cells in CRC.Additionally,the combination of circPDIA4 and miR-9-5p was confirmed,as well as miR-9-5p binding to SP1.Rescue experiments also showed that the circPDIA4/miR-9-5p/SP1 axis accelerated the development of CRC.In addition,SP1 combined with the promoter region of circPDIA4 and induced circPDIA4 transcription.CircPDIA4 was shown to facilitate tumor growth in an in vivo assay.Conclusions:The circPDIA4/miR-9-5p/SP1 feedback loop was shown to aggravate CRC progression.This finding suggests that the ceRNA axis may be a promising biomarker for CRC patient treatment.展开更多
In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign...In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.展开更多
Objective To determine the impact of scenario-based lecture and personalized video feedback on anesthesia residents'communication skills during preoperative visits.Methods A total of 24 anesthesia residents were r...Objective To determine the impact of scenario-based lecture and personalized video feedback on anesthesia residents'communication skills during preoperative visits.Methods A total of 24 anesthesia residents were randomly divided into a video group and a control group.Residents in both groups took part in a simulated interview and received a scenario-based lecture on how to communicate with patients during preoperative visits.Afterwards,residents in the video group received personalized video feedback recorded during the simulated interview.One week later all the residents undertook another simulated interview.The communication skills of all the residents were assessed using the Consultation and Relational Empathy measure(CARE)scale by two examiners and one standardized patient(SP),both of whom were blinded to the group allocation.Results CARE scores were comparable between the two groups before training,and significantly improved after training in both groups(all P<0.05).The video group showed significantly greater increase in CARE score after the training than the control group,especially assessed by the SP(t=6.980,P<0.001).There were significant correlations between the examiner-assessed scores and SP-assessed scores(both P=0.001).Conclusion Scenario-based lectures with simulated interviews provide a good method for training communication skills of anesthesia residents,and personalized video feedback can enhance their performance on showing empathy during preoperative interview.展开更多
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n...In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.展开更多
This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
This paper proposes a feedback-optimization-based control method for linear time-invariant systems,which is aimed to exponentially stabilize the system and,meanwhile,drive the system output to an approximate solution ...This paper proposes a feedback-optimization-based control method for linear time-invariant systems,which is aimed to exponentially stabilize the system and,meanwhile,drive the system output to an approximate solution of an optimization problem with convex set constraints and affine inequality constraints.To ensure the exponential stability of the closed-loop system,the original optimization problem is first reformulated into a counterpart that has only convex set constraints.It is shown that the optimal solution of the new optimization problem is an approximate optimal solution of the original problem.Then,based on this new optimization problem,the projected primal–dual gradient dynamics algorithm is used to design the controller.By using the singular perturbation method,sufficient conditions are provided to ensure the exponential stability of the closed-loop system.The proposed method is also applied to microgrid control.展开更多
Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training thro...Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training through practical exercises on abstracted and reduced models.Methods The authors strive for a portable,easy to use and cost-effective Virtual Reality-based(VR)laparoscopic pre-training platform and therefore address the question of how such a system has to be designed to achieve the quality of today's gold standard using real tissue specimens.Current VR controllers are limited regarding haptic feedback.Since haptic feedback is necessary or at least beneficial for laparoscopic surgery training,the platform to be developed consists of a newly designed prototype laparoscopic VR controller with haptic feedback,a commercially available head-mounted display,a VR environment for simulating a laparoscopic surgery,and a training concept.Results To take full advantage of benefits such as repeatability and cost-effectiveness of VR-based training,the system shall not require a tissue sample for haptic feedback.It is currently calculated and visually displayed to the user in the VR environment.On the prototype controller,a first axis was provided with perceptible feedback for test purposes.Two of the prototype VR controllers can be combined to simulate a typical both-handed use case,e.g.,laparoscopic suturing.A Unity based VR prototype allows the execution of simple standard pre-trainings.Conclusions The first prototype enables full operation of a virtual laparoscopic instrument in VR.In addition,the simulation can compute simple interaction forces.Major challenges lie in a realistic real-time tissue simulation and calculation of forces for the haptic feedback.Mechanical weaknesses were identified in the first hardware prototype,which will be improved in subsequent versions.All degrees of freedom of the controller are to be provided with haptic feedback.To make forces tangible in the simulation,characteristic values need to be determined using real tissue samples.The system has yet to be validated by cross-comparing real and VR haptics with surgeons.展开更多
In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of ...In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.展开更多
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
基金Supported by the Natienal Natural Science Foundation of China(U23A20287).
文摘Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.
基金supported by the Strategic Pri-ority Research Program(A)of the Chinese Academy of Sciences(Grant No.XDA28080503)the National Natural Science Foundation of China(Grant No.42071025)+1 种基金the Youth Innovation Promotion Associa-tion of Chinese Academy of Sciences(Grant No.2023240)the Pacific Northwest National Laboratory which is operated for DOE by Battelle Memorial Institute under Contract DE-A06-76RLO 1830.
文摘Phenology shifts influence regional climate by altering energy,and water fluxes through biophysical processes.However,a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to re gional climate remains elusive.Using long-term remote sensing observations and Weather Research and Fore casting(WRF)model simulations,we investigated vegetation phenology changes from 2003 to 2020 and quan tified their biophysical controls on the regional climate in Northeast China.Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests,while advanced green-up and delayed dormancy extended the growing season in croplands.This prolonged presence and increased maximum green cover in tensified climate-vegetation interactions,resulting in more significant surface cooling in croplands compared to forests.Surface cooling from forest phenology changes was prominent during May’s green-up(-0.53±0.07°C),while crop phenology changes induced cooling throughout the growing season,particularly in June(-0.47±0.15°C),July(-0.48±0.11°C),and September(-0.28±0.09°C).Furthermore,we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model,with aero dynamic resistance emerging as the dominant factor.Crucially,our findings underscored that the land surface temperature(LST)sensitivity,exhibited substantially higher values in croplands rather than temperate forests.These strong sensitivities,coupled with the projected continuation of phenology shifts,portend further growing season cooling in croplands.These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature,emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.
基金supported by the Science and Technology Development Fund of Macao SAR(File No.0117/2024/AMJ)University of Macao(MYRG-GRG2023-00041-FST-UMDF,MYRG-GRG2024-00121-FST,MYRG-CRG2024-00014-FST-ICI)Zhuhai UM Science&Technology Research Institute(CP-009-2024).
文摘In the realm of virtual reality(VR),haptic feedback is integral to enhance the immersive experience;yet,existing wearable devices predominantly rely on skin contact feedback,lacking options for compact and non-contact breeze-sense feedback.Herein,we propose a compact and non-contact working model piezoelectret actuator for providing a gentle and safe breeze sensation.This easy-fabricated and flexible breeze-sense generator with thickness around 1 mm generates air flow pressure up to~163 Pa,which is significantly sensed by human skin.In a typical demonstration,the breeze-sense generators array showcases its versatility by employing multiple coded modes for non-contact information transmitting.The thin thinness and good flexibility facilitate seamless integration with wearable VR setups,and the wearable arrays empower volunteers to precisely perceive the continuous and sudden breeze senses in the virtual environments.This work is expected to inspire developing new haptic feedback devices that play pivotal roles in human-machine interfaces for VR applications.
基金Project supported by the National Natural Science Foundation of China(Nos.12102015 and 12472003)the R&D Program of Beijing Municipal Education Commission of China(No.KM202110005030)。
文摘Graphene platelets(GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control,greatly expanding their applications in the aerospace industry.For the first time,this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surfacebonded piezoelectric layers.The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors.The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied.The Newmark-βmethod combined with Newton's iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads,impact loads,and moving loads.Additionally,special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108+1 种基金the Southeast University-China Mobile Research Institute Joint Innovation Centersupported in part by the Scientific Research Foundation of Graduate School of Southeast University under Grant YBPY2118.
文摘The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
文摘This paper is based on the background of the 2nd Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AIWork Group,where the framework of the eigenvector-based channel state information(CSI)feedback problem is firstly provided.Then a basic Transformer backbone for CSI feedback referred to EVCsiNet-T is proposed.Moreover,a series of potential enhancements for deep learning based(DL-based)CSI feedback including i)data augmentation,ii)loss function design,iii)training strategy,and iv)model ensemble are introduced.The experimental results involving the comparison between EVCsiNet-T and traditional codebook methods over different channels are further provided,which show the advanced performance and a promising prospect of Transformer on DL-based CSI feedback problem.
基金funded by the National Key Research and Development Program of China(Nos.2022YFE03130000 and 2022YFE03130003)National Natural Science Foundation of China(Nos.12205336 and 12475208)+2 种基金The Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB0790102)the Provincial Natural Science Foundation of Anhui(No.2408085J002)Interdisciplinary and Collaborative Teams of CAS。
文摘A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EAST tokamak.The feedback control system includes four main parts:the impurity powder dropper(IPD),a diagnostic system measuring fuel recycling level represented by D_(α)emission,a plasma control system(PCS)implementing the Proportional Integral Derivative(PID)algorithm,and a signal converter connecting the IPD and PCS.Based on this control system,both active control and feedback control experiments have recently been performed on EAST with a full metal wall.The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases.In the feedback control experiments,it is also observed that the D_(α)emission is reduced to the level below the target D_(α)value by adjusting boron injection flow rate,indicating successful implementation of the fuel recycling feedback control on EAST.This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices.
基金supported by the National Key R&D Program of China (Grant No.2022YFB3206700)the Independent Research Project of the State Key Laboratory of Mechanical Transmission (Grant No.SKLMT-ZZKT-2022M06)the Innovation Group Science Fund of Chongqing Natural Science Foundation (Grant No.cstc2019jcyj-cxttX0003).
文摘Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.
基金financially supported by the General Program of the National Natural Science Foundation of China (No. 52274326)the Fundamental Research Funds for the Central Universities (No. N2425031)+3 种基金Seventh Batch of Ten Thousand Talents Plan (No. ZX20220553)China Baowu Low Carbon Metallurgy Innovation Foundation (No. BWLCF202109)The key technology research and development and application of digital transformation throughout the iron and steel production process (No. 2023JH2/101800058)Liaoning Province Science and Technology Plan Joint Program (Key Research and Development Program Project)
文摘The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金supported by the National Natural Science Foundation of China(Grant Nos.82073276 and 82273100)Science and Technology Project of Tianjin Binhai New Area Health Commission(Grant No.2022BWKY016)the China Digestive Tumor Clinical Scientific Research Public Welfare Project(Grant No.P014-058).
文摘Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the circPDIA4/miR-9-5p/SP1 axis on development of CRC has not been studied.Methods:Western blot,immunohistochemistry,and reverse transcription-quantitative polymerase chain reaction assays were used to analyze gene expression.The CCK-8 assay was used to assess cell growth.The Transwell assay was used to detect invasion and migration of cells.The luciferase reporter and RNA immunoprecipitation tests were used to determine if miR-9-5p and circPDIA4(or SP1)bind to one another.An in vivo assay was used to measure tumor growth.Results:It was shown that circPDIA4 expression was greater in CRC cell lines and tissues than healthy cell lines and tissues.CircPDIA4 knockdown prevented the invasion,migration,and proliferation of cells in CRC.Additionally,the combination of circPDIA4 and miR-9-5p was confirmed,as well as miR-9-5p binding to SP1.Rescue experiments also showed that the circPDIA4/miR-9-5p/SP1 axis accelerated the development of CRC.In addition,SP1 combined with the promoter region of circPDIA4 and induced circPDIA4 transcription.CircPDIA4 was shown to facilitate tumor growth in an in vivo assay.Conclusions:The circPDIA4/miR-9-5p/SP1 feedback loop was shown to aggravate CRC progression.This finding suggests that the ceRNA axis may be a promising biomarker for CRC patient treatment.
基金Project supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12172323,12132013+1 种基金12332003)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.
基金National High Level Hospital Clinical Research Fund(2022-PUMCH-C-011).
文摘Objective To determine the impact of scenario-based lecture and personalized video feedback on anesthesia residents'communication skills during preoperative visits.Methods A total of 24 anesthesia residents were randomly divided into a video group and a control group.Residents in both groups took part in a simulated interview and received a scenario-based lecture on how to communicate with patients during preoperative visits.Afterwards,residents in the video group received personalized video feedback recorded during the simulated interview.One week later all the residents undertook another simulated interview.The communication skills of all the residents were assessed using the Consultation and Relational Empathy measure(CARE)scale by two examiners and one standardized patient(SP),both of whom were blinded to the group allocation.Results CARE scores were comparable between the two groups before training,and significantly improved after training in both groups(all P<0.05).The video group showed significantly greater increase in CARE score after the training than the control group,especially assessed by the SP(t=6.980,P<0.001).There were significant correlations between the examiner-assessed scores and SP-assessed scores(both P=0.001).Conclusion Scenario-based lectures with simulated interviews provide a good method for training communication skills of anesthesia residents,and personalized video feedback can enhance their performance on showing empathy during preoperative interview.
基金supported in part by the National Natural Science Foundation of China (62222310, U1813201, 61973131, 62033008)the Research Fund for the Taishan Scholar Project of Shandong Province of China+2 种基金the NSFSD(ZR2022ZD34)Japan Society for the Promotion of Science (21K04129)Fujian Outstanding Youth Science Fund (2020J06022)。
文摘In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
文摘This paper proposes a feedback-optimization-based control method for linear time-invariant systems,which is aimed to exponentially stabilize the system and,meanwhile,drive the system output to an approximate solution of an optimization problem with convex set constraints and affine inequality constraints.To ensure the exponential stability of the closed-loop system,the original optimization problem is first reformulated into a counterpart that has only convex set constraints.It is shown that the optimal solution of the new optimization problem is an approximate optimal solution of the original problem.Then,based on this new optimization problem,the projected primal–dual gradient dynamics algorithm is used to design the controller.By using the singular perturbation method,sufficient conditions are provided to ensure the exponential stability of the closed-loop system.The proposed method is also applied to microgrid control.
文摘Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training through practical exercises on abstracted and reduced models.Methods The authors strive for a portable,easy to use and cost-effective Virtual Reality-based(VR)laparoscopic pre-training platform and therefore address the question of how such a system has to be designed to achieve the quality of today's gold standard using real tissue specimens.Current VR controllers are limited regarding haptic feedback.Since haptic feedback is necessary or at least beneficial for laparoscopic surgery training,the platform to be developed consists of a newly designed prototype laparoscopic VR controller with haptic feedback,a commercially available head-mounted display,a VR environment for simulating a laparoscopic surgery,and a training concept.Results To take full advantage of benefits such as repeatability and cost-effectiveness of VR-based training,the system shall not require a tissue sample for haptic feedback.It is currently calculated and visually displayed to the user in the VR environment.On the prototype controller,a first axis was provided with perceptible feedback for test purposes.Two of the prototype VR controllers can be combined to simulate a typical both-handed use case,e.g.,laparoscopic suturing.A Unity based VR prototype allows the execution of simple standard pre-trainings.Conclusions The first prototype enables full operation of a virtual laparoscopic instrument in VR.In addition,the simulation can compute simple interaction forces.Major challenges lie in a realistic real-time tissue simulation and calculation of forces for the haptic feedback.Mechanical weaknesses were identified in the first hardware prototype,which will be improved in subsequent versions.All degrees of freedom of the controller are to be provided with haptic feedback.To make forces tangible in the simulation,characteristic values need to be determined using real tissue samples.The system has yet to be validated by cross-comparing real and VR haptics with surgeons.
基金partially supported by National Natura Science Foundation of China (62350710214, U23A20325)Shenzhen Key Laboratory of Control Theory and Intelligent Systems (ZDSYS20220330161800001)。
文摘In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.