期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Parallel processing model for low-dose computed tomography image denoising
1
作者 Libing Yao Jiping Wang +4 位作者 Zhongyi Wu Qiang Du Xiaodong Yang Ming Li Jian Zheng 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期237-256,共20页
Low-dose computed tomography(LDCT)has gained increasing attention owing to its crucial role in reducing radiation exposure in patients.However,LDCT-reconstructed images often suffer from significant noise and artifact... Low-dose computed tomography(LDCT)has gained increasing attention owing to its crucial role in reducing radiation exposure in patients.However,LDCT-reconstructed images often suffer from significant noise and artifacts,negatively impacting the radiologists’ability to accurately diagnose.To address this issue,many studies have focused on denoising LDCT images using deep learning(DL)methods.However,these DL-based denoising methods have been hindered by the highly variable feature distribution of LDCT data from different imaging sources,which adversely affects the performance of current denoising models.In this study,we propose a parallel processing model,the multi-encoder deep feature transformation network(MDFTN),which is designed to enhance the performance of LDCT imaging for multisource data.Unlike traditional network structures,which rely on continual learning to process multitask data,the approach can simultaneously handle LDCT images within a unified framework from various imaging sources.The proposed MDFTN consists of multiple encoders and decoders along with a deep feature transformation module(DFTM).During forward propagation in network training,each encoder extracts diverse features from its respective data source in parallel and the DFTM compresses these features into a shared feature space.Subsequently,each decoder performs an inverse operation for multisource loss estimation.Through collaborative training,the proposed MDFTN leverages the complementary advantages of multisource data distribution to enhance its adaptability and generalization.Numerous experiments were conducted on two public datasets and one local dataset,which demonstrated that the proposed network model can simultaneously process multisource data while effectively suppressing noise and preserving fine structures.The source code is available at https://github.com/123456789ey/MDFTN. 展开更多
关键词 Deep learning Low-dose computed tomography multi-encoder deep feature transformation Multisource denoising
在线阅读 下载PDF
Research on system combination of machine translation based on Transformer
2
作者 刘文斌 HE Yanqing +1 位作者 LAN Tian WU Zhenfeng 《High Technology Letters》 EI CAS 2023年第3期310-317,共8页
Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of m... Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of multiple systems through statistical combination or neural network combination.This paper proposes a new multi-system translation combination method based on the Transformer architecture,which uses a multi-encoder to encode source sentences and the translation results of each system in order to realize encoder combination and decoder combination.The experimental verification on the Chinese-English translation task shows that this method has 1.2-2.35 more bilingual evaluation understudy(BLEU)points compared with the best single system results,0.71-3.12 more BLEU points compared with the statistical combination method,and 0.14-0.62 more BLEU points compared with the state-of-the-art neural network combination method.The experimental results demonstrate the effectiveness of the proposed system combination method based on Transformer. 展开更多
关键词 TRANSFORMER system combination neural machine translation(NMT) attention mechanism multi-encoder
在线阅读 下载PDF
基于多模态图像深度学习局部晚期鼻咽癌肿瘤靶体积自动勾画的研究 被引量:1
3
作者 吴伯恒 曹鸿斌 +7 位作者 马永康 张炜 唐剑敏 许磊 孙岚 杨翠萍 白永瑞 閤谦 《肿瘤》 CAS 北大核心 2023年第7期570-579,共10页
目的:随着人工智能的发展,深度学习在放疗肿瘤靶体积自动勾画中的应用日益受到关注。由于T3~4期鼻咽癌的肿瘤表型变异性较大,并且在CT图像上表现为较低的软组织对比度,从而导致勾画肿瘤靶体积的信心受限。本研究基于多模态图像深度学习... 目的:随着人工智能的发展,深度学习在放疗肿瘤靶体积自动勾画中的应用日益受到关注。由于T3~4期鼻咽癌的肿瘤表型变异性较大,并且在CT图像上表现为较低的软组织对比度,从而导致勾画肿瘤靶体积的信心受限。本研究基于多模态图像深度学习对T3~4期鼻咽癌大体肿瘤体积(gross tumor volume of nasopharyngeal carcinoma,GTVnx)进行自动勾画,以期提高靶区勾画的精度和效率。方法:回顾性收集T3~4期鼻咽癌患者的CT、MRI(脂肪抑制T2加权和增强T1加权)和PET-CT图像。将多模态图像输入Multi-Encoder U-net进行多组模型训练和测试。采用dice相似系数(dice similarity coefficient,DSC)和HD95定量分析GTVnx的自动勾画结果。结果:对比不同策略模块的试验结果,显示‘Cross-Y’S Net多模态图像深度学习网络自动勾画测试结果最佳,DSC为0.665±0.045,HD95为5.17±3.34。结论:基于多模态图像CT、MRI和PET-CT提供的优势互补信息进行深度学习,在定位CT图像上完成鼻咽癌放疗肿瘤靶体积的自动勾画,有望提高靶区勾画的精度和效率,增强临床应用的信心。随着人工智能和影像学技术的不断发展,未来会更好地适应肿瘤放疗的需求。 展开更多
关键词 鼻咽癌 放射治疗 深度学习 自动勾画 多模态影像 multi-encoder U-net
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部